Properties

Label 1588.1103
Modulus $1588$
Conductor $1588$
Order $36$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1588, base_ring=CyclotomicField(36)) M = H._module chi = DirichletCharacter(H, M([18,25]))
 
Copy content pari:[g,chi] = znchar(Mod(1103,1588))
 

Basic properties

Modulus: \(1588\)
Conductor: \(1588\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(36\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 1588.v

\(\chi_{1588}(203,\cdot)\) \(\chi_{1588}(591,\cdot)\) \(\chi_{1588}(835,\cdot)\) \(\chi_{1588}(947,\cdot)\) \(\chi_{1588}(1007,\cdot)\) \(\chi_{1588}(1095,\cdot)\) \(\chi_{1588}(1103,\cdot)\) \(\chi_{1588}(1279,\cdot)\) \(\chi_{1588}(1287,\cdot)\) \(\chi_{1588}(1375,\cdot)\) \(\chi_{1588}(1435,\cdot)\) \(\chi_{1588}(1547,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{36})\)
Fixed field: Number field defined by a degree 36 polynomial

Values on generators

\((795,5)\) → \((-1,e\left(\frac{25}{36}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(13\)\(15\)\(17\)\(19\)\(21\)
\( \chi_{ 1588 }(1103, a) \) \(1\)\(1\)\(e\left(\frac{8}{9}\right)\)\(e\left(\frac{25}{36}\right)\)\(e\left(\frac{35}{36}\right)\)\(e\left(\frac{7}{9}\right)\)\(e\left(\frac{13}{18}\right)\)\(e\left(\frac{5}{36}\right)\)\(e\left(\frac{7}{12}\right)\)\(e\left(\frac{7}{12}\right)\)\(e\left(\frac{7}{18}\right)\)\(e\left(\frac{31}{36}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 1588 }(1103,a) \;\) at \(\;a = \) e.g. 2