| L(s) = 1 | + (0.766 − 0.642i)3-s + (−0.342 − 0.939i)5-s + (0.984 − 0.173i)7-s + (0.173 − 0.984i)9-s + (−0.173 − 0.984i)11-s + (0.642 + 0.766i)13-s + (−0.866 − 0.5i)15-s + (−0.866 − 0.5i)17-s + (−0.766 + 0.642i)19-s + (0.642 − 0.766i)21-s + (−0.939 − 0.342i)23-s + (−0.766 + 0.642i)25-s + (−0.5 − 0.866i)27-s + (−0.939 − 0.342i)29-s − 31-s + ⋯ |
| L(s) = 1 | + (0.766 − 0.642i)3-s + (−0.342 − 0.939i)5-s + (0.984 − 0.173i)7-s + (0.173 − 0.984i)9-s + (−0.173 − 0.984i)11-s + (0.642 + 0.766i)13-s + (−0.866 − 0.5i)15-s + (−0.866 − 0.5i)17-s + (−0.766 + 0.642i)19-s + (0.642 − 0.766i)21-s + (−0.939 − 0.342i)23-s + (−0.766 + 0.642i)25-s + (−0.5 − 0.866i)27-s + (−0.939 − 0.342i)29-s − 31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1588 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.961 - 0.275i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1588 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.961 - 0.275i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.2158064954 - 1.534569971i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.2158064954 - 1.534569971i\) |
| \(L(1)\) |
\(\approx\) |
\(1.029049034 - 0.6799028716i\) |
| \(L(1)\) |
\(\approx\) |
\(1.029049034 - 0.6799028716i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 397 | \( 1 \) |
| good | 3 | \( 1 + (0.766 - 0.642i)T \) |
| 5 | \( 1 + (-0.342 - 0.939i)T \) |
| 7 | \( 1 + (0.984 - 0.173i)T \) |
| 11 | \( 1 + (-0.173 - 0.984i)T \) |
| 13 | \( 1 + (0.642 + 0.766i)T \) |
| 17 | \( 1 + (-0.866 - 0.5i)T \) |
| 19 | \( 1 + (-0.766 + 0.642i)T \) |
| 23 | \( 1 + (-0.939 - 0.342i)T \) |
| 29 | \( 1 + (-0.939 - 0.342i)T \) |
| 31 | \( 1 - T \) |
| 37 | \( 1 + (0.173 + 0.984i)T \) |
| 41 | \( 1 + (-0.342 - 0.939i)T \) |
| 43 | \( 1 + (-0.5 - 0.866i)T \) |
| 47 | \( 1 + (-0.766 - 0.642i)T \) |
| 53 | \( 1 + (0.866 - 0.5i)T \) |
| 59 | \( 1 + (0.984 + 0.173i)T \) |
| 61 | \( 1 + (-0.642 + 0.766i)T \) |
| 67 | \( 1 + (0.939 + 0.342i)T \) |
| 71 | \( 1 + (0.866 - 0.5i)T \) |
| 73 | \( 1 + (-0.939 - 0.342i)T \) |
| 79 | \( 1 + (0.939 + 0.342i)T \) |
| 83 | \( 1 + (-0.5 + 0.866i)T \) |
| 89 | \( 1 + (-0.342 - 0.939i)T \) |
| 97 | \( 1 + (0.173 - 0.984i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−20.77610143802003322417947467104, −19.98472514745417712388091026857, −19.67166095745651393777282356588, −18.42098352794572334837309801139, −18.047002559715655545539733452842, −17.24520087816780211137221220036, −16.024880057026291699647228551319, −15.368767314055452076840376736, −14.85963504379930439920948551969, −14.42940922348878460981285383793, −13.37227114223665751017191838846, −12.69964917797361057524008529459, −11.34256872784351152376444823624, −10.96476132221371583634503476327, −10.24662258717083369912837500750, −9.35715443657082030681687674093, −8.420805061811494690023255956493, −7.84290317356520522749088179663, −7.11746955359725989848345483390, −5.99659822130482957059157570736, −4.93710128544507920837187761754, −4.16309629732610243584872060910, −3.45904301206076862541085710571, −2.33677382949271108176789365761, −1.8391673819353732571730617304,
0.46656504599352640252228344417, 1.64715339200933076712928143127, 2.144434012605512940402138554377, 3.68172430062190756267922324653, 4.10417288474648442018219830772, 5.223525853638190549248515068098, 6.15370911105947579722163760736, 7.134709023854220720051390266922, 8.00756839001282730919449761139, 8.63271083016457315147144343011, 8.914649775289718194131046868911, 10.17165291062285856026494493000, 11.37155103081787746720889690156, 11.71326431500197061805994517020, 12.73744529950663360189095686240, 13.49728604144670333624746992430, 13.93390152684258693309623622111, 14.826176682653421543692274962126, 15.60305232651490482836392815768, 16.51333498067405819385425454921, 17.07389365508665444989663773892, 18.25028465313395883721469404179, 18.5442958220802521567978551851, 19.51159888475685883450756048006, 20.167569259442067379507203406504