Properties

Label 1576.bj
Modulus $1576$
Conductor $197$
Order $196$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1576, base_ring=CyclotomicField(196)) M = H._module chi = DirichletCharacter(H, M([0,0,159])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(17,1576)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(1576\)
Conductor: \(197\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(196\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 197.i
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{196})$
Fixed field: Number field defined by a degree 196 polynomial (not computed)

First 31 of 84 characters in Galois orbit

Character \(-1\) \(1\) \(3\) \(5\) \(7\) \(9\) \(11\) \(13\) \(15\) \(17\) \(19\) \(21\)
\(\chi_{1576}(17,\cdot)\) \(-1\) \(1\) \(e\left(\frac{163}{196}\right)\) \(e\left(\frac{39}{196}\right)\) \(e\left(\frac{43}{98}\right)\) \(e\left(\frac{65}{98}\right)\) \(e\left(\frac{103}{196}\right)\) \(e\left(\frac{55}{196}\right)\) \(e\left(\frac{3}{98}\right)\) \(e\left(\frac{193}{196}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{53}{196}\right)\)
\(\chi_{1576}(57,\cdot)\) \(-1\) \(1\) \(e\left(\frac{71}{196}\right)\) \(e\left(\frac{23}{196}\right)\) \(e\left(\frac{53}{98}\right)\) \(e\left(\frac{71}{98}\right)\) \(e\left(\frac{111}{196}\right)\) \(e\left(\frac{143}{196}\right)\) \(e\left(\frac{47}{98}\right)\) \(e\left(\frac{149}{196}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{177}{196}\right)\)
\(\chi_{1576}(73,\cdot)\) \(-1\) \(1\) \(e\left(\frac{109}{196}\right)\) \(e\left(\frac{85}{196}\right)\) \(e\left(\frac{51}{98}\right)\) \(e\left(\frac{11}{98}\right)\) \(e\left(\frac{129}{196}\right)\) \(e\left(\frac{145}{196}\right)\) \(e\left(\frac{97}{98}\right)\) \(e\left(\frac{99}{196}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{15}{196}\right)\)
\(\chi_{1576}(89,\cdot)\) \(-1\) \(1\) \(e\left(\frac{155}{196}\right)\) \(e\left(\frac{191}{196}\right)\) \(e\left(\frac{95}{98}\right)\) \(e\left(\frac{57}{98}\right)\) \(e\left(\frac{27}{196}\right)\) \(e\left(\frac{3}{196}\right)\) \(e\left(\frac{75}{98}\right)\) \(e\left(\frac{121}{196}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{149}{196}\right)\)
\(\chi_{1576}(145,\cdot)\) \(-1\) \(1\) \(e\left(\frac{85}{196}\right)\) \(e\left(\frac{149}{196}\right)\) \(e\left(\frac{11}{98}\right)\) \(e\left(\frac{85}{98}\right)\) \(e\left(\frac{97}{196}\right)\) \(e\left(\frac{185}{196}\right)\) \(e\left(\frac{19}{98}\right)\) \(e\left(\frac{79}{196}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{107}{196}\right)\)
\(\chi_{1576}(153,\cdot)\) \(-1\) \(1\) \(e\left(\frac{25}{196}\right)\) \(e\left(\frac{113}{196}\right)\) \(e\left(\frac{9}{98}\right)\) \(e\left(\frac{25}{98}\right)\) \(e\left(\frac{17}{196}\right)\) \(e\left(\frac{89}{196}\right)\) \(e\left(\frac{69}{98}\right)\) \(e\left(\frac{127}{196}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{43}{196}\right)\)
\(\chi_{1576}(185,\cdot)\) \(-1\) \(1\) \(e\left(\frac{97}{196}\right)\) \(e\left(\frac{117}{196}\right)\) \(e\left(\frac{31}{98}\right)\) \(e\left(\frac{97}{98}\right)\) \(e\left(\frac{113}{196}\right)\) \(e\left(\frac{165}{196}\right)\) \(e\left(\frac{9}{98}\right)\) \(e\left(\frac{187}{196}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{159}{196}\right)\)
\(\chi_{1576}(209,\cdot)\) \(-1\) \(1\) \(e\left(\frac{195}{196}\right)\) \(e\left(\frac{19}{196}\right)\) \(e\left(\frac{31}{98}\right)\) \(e\left(\frac{97}{98}\right)\) \(e\left(\frac{15}{196}\right)\) \(e\left(\frac{67}{196}\right)\) \(e\left(\frac{9}{98}\right)\) \(e\left(\frac{89}{196}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{61}{196}\right)\)
\(\chi_{1576}(241,\cdot)\) \(-1\) \(1\) \(e\left(\frac{123}{196}\right)\) \(e\left(\frac{15}{196}\right)\) \(e\left(\frac{9}{98}\right)\) \(e\left(\frac{25}{98}\right)\) \(e\left(\frac{115}{196}\right)\) \(e\left(\frac{187}{196}\right)\) \(e\left(\frac{69}{98}\right)\) \(e\left(\frac{29}{196}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{141}{196}\right)\)
\(\chi_{1576}(249,\cdot)\) \(-1\) \(1\) \(e\left(\frac{183}{196}\right)\) \(e\left(\frac{51}{196}\right)\) \(e\left(\frac{11}{98}\right)\) \(e\left(\frac{85}{98}\right)\) \(e\left(\frac{195}{196}\right)\) \(e\left(\frac{87}{196}\right)\) \(e\left(\frac{19}{98}\right)\) \(e\left(\frac{177}{196}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{9}{196}\right)\)
\(\chi_{1576}(305,\cdot)\) \(-1\) \(1\) \(e\left(\frac{57}{196}\right)\) \(e\left(\frac{93}{196}\right)\) \(e\left(\frac{95}{98}\right)\) \(e\left(\frac{57}{98}\right)\) \(e\left(\frac{125}{196}\right)\) \(e\left(\frac{101}{196}\right)\) \(e\left(\frac{75}{98}\right)\) \(e\left(\frac{23}{196}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{51}{196}\right)\)
\(\chi_{1576}(321,\cdot)\) \(-1\) \(1\) \(e\left(\frac{11}{196}\right)\) \(e\left(\frac{183}{196}\right)\) \(e\left(\frac{51}{98}\right)\) \(e\left(\frac{11}{98}\right)\) \(e\left(\frac{31}{196}\right)\) \(e\left(\frac{47}{196}\right)\) \(e\left(\frac{97}{98}\right)\) \(e\left(\frac{1}{196}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{113}{196}\right)\)
\(\chi_{1576}(337,\cdot)\) \(-1\) \(1\) \(e\left(\frac{169}{196}\right)\) \(e\left(\frac{121}{196}\right)\) \(e\left(\frac{53}{98}\right)\) \(e\left(\frac{71}{98}\right)\) \(e\left(\frac{13}{196}\right)\) \(e\left(\frac{45}{196}\right)\) \(e\left(\frac{47}{98}\right)\) \(e\left(\frac{51}{196}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{79}{196}\right)\)
\(\chi_{1576}(377,\cdot)\) \(-1\) \(1\) \(e\left(\frac{65}{196}\right)\) \(e\left(\frac{137}{196}\right)\) \(e\left(\frac{43}{98}\right)\) \(e\left(\frac{65}{98}\right)\) \(e\left(\frac{5}{196}\right)\) \(e\left(\frac{153}{196}\right)\) \(e\left(\frac{3}{98}\right)\) \(e\left(\frac{95}{196}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{151}{196}\right)\)
\(\chi_{1576}(425,\cdot)\) \(-1\) \(1\) \(e\left(\frac{41}{196}\right)\) \(e\left(\frac{5}{196}\right)\) \(e\left(\frac{3}{98}\right)\) \(e\left(\frac{41}{98}\right)\) \(e\left(\frac{169}{196}\right)\) \(e\left(\frac{193}{196}\right)\) \(e\left(\frac{23}{98}\right)\) \(e\left(\frac{75}{196}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{47}{196}\right)\)
\(\chi_{1576}(465,\cdot)\) \(-1\) \(1\) \(e\left(\frac{107}{196}\right)\) \(e\left(\frac{123}{196}\right)\) \(e\left(\frac{15}{98}\right)\) \(e\left(\frac{9}{98}\right)\) \(e\left(\frac{159}{196}\right)\) \(e\left(\frac{83}{196}\right)\) \(e\left(\frac{17}{98}\right)\) \(e\left(\frac{81}{196}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{137}{196}\right)\)
\(\chi_{1576}(473,\cdot)\) \(-1\) \(1\) \(e\left(\frac{159}{196}\right)\) \(e\left(\frac{115}{196}\right)\) \(e\left(\frac{69}{98}\right)\) \(e\left(\frac{61}{98}\right)\) \(e\left(\frac{163}{196}\right)\) \(e\left(\frac{127}{196}\right)\) \(e\left(\frac{39}{98}\right)\) \(e\left(\frac{157}{196}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{101}{196}\right)\)
\(\chi_{1576}(489,\cdot)\) \(-1\) \(1\) \(e\left(\frac{79}{196}\right)\) \(e\left(\frac{67}{196}\right)\) \(e\left(\frac{1}{98}\right)\) \(e\left(\frac{79}{98}\right)\) \(e\left(\frac{187}{196}\right)\) \(e\left(\frac{195}{196}\right)\) \(e\left(\frac{73}{98}\right)\) \(e\left(\frac{25}{196}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{81}{196}\right)\)
\(\chi_{1576}(497,\cdot)\) \(-1\) \(1\) \(e\left(\frac{73}{196}\right)\) \(e\left(\frac{181}{196}\right)\) \(e\left(\frac{89}{98}\right)\) \(e\left(\frac{73}{98}\right)\) \(e\left(\frac{81}{196}\right)\) \(e\left(\frac{9}{196}\right)\) \(e\left(\frac{29}{98}\right)\) \(e\left(\frac{167}{196}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{55}{196}\right)\)
\(\chi_{1576}(505,\cdot)\) \(-1\) \(1\) \(e\left(\frac{89}{196}\right)\) \(e\left(\frac{73}{196}\right)\) \(e\left(\frac{83}{98}\right)\) \(e\left(\frac{89}{98}\right)\) \(e\left(\frac{37}{196}\right)\) \(e\left(\frac{113}{196}\right)\) \(e\left(\frac{81}{98}\right)\) \(e\left(\frac{115}{196}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{59}{196}\right)\)
\(\chi_{1576}(513,\cdot)\) \(-1\) \(1\) \(e\left(\frac{129}{196}\right)\) \(e\left(\frac{97}{196}\right)\) \(e\left(\frac{19}{98}\right)\) \(e\left(\frac{31}{98}\right)\) \(e\left(\frac{25}{196}\right)\) \(e\left(\frac{177}{196}\right)\) \(e\left(\frac{15}{98}\right)\) \(e\left(\frac{83}{196}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{167}{196}\right)\)
\(\chi_{1576}(545,\cdot)\) \(-1\) \(1\) \(e\left(\frac{47}{196}\right)\) \(e\left(\frac{87}{196}\right)\) \(e\left(\frac{13}{98}\right)\) \(e\left(\frac{47}{98}\right)\) \(e\left(\frac{79}{196}\right)\) \(e\left(\frac{183}{196}\right)\) \(e\left(\frac{67}{98}\right)\) \(e\left(\frac{129}{196}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{73}{196}\right)\)
\(\chi_{1576}(553,\cdot)\) \(-1\) \(1\) \(e\left(\frac{125}{196}\right)\) \(e\left(\frac{173}{196}\right)\) \(e\left(\frac{45}{98}\right)\) \(e\left(\frac{27}{98}\right)\) \(e\left(\frac{85}{196}\right)\) \(e\left(\frac{53}{196}\right)\) \(e\left(\frac{51}{98}\right)\) \(e\left(\frac{47}{196}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{19}{196}\right)\)
\(\chi_{1576}(561,\cdot)\) \(-1\) \(1\) \(e\left(\frac{149}{196}\right)\) \(e\left(\frac{109}{196}\right)\) \(e\left(\frac{85}{98}\right)\) \(e\left(\frac{51}{98}\right)\) \(e\left(\frac{117}{196}\right)\) \(e\left(\frac{13}{196}\right)\) \(e\left(\frac{31}{98}\right)\) \(e\left(\frac{67}{196}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{123}{196}\right)\)
\(\chi_{1576}(593,\cdot)\) \(-1\) \(1\) \(e\left(\frac{181}{196}\right)\) \(e\left(\frac{89}{196}\right)\) \(e\left(\frac{73}{98}\right)\) \(e\left(\frac{83}{98}\right)\) \(e\left(\frac{29}{196}\right)\) \(e\left(\frac{25}{196}\right)\) \(e\left(\frac{37}{98}\right)\) \(e\left(\frac{159}{196}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{131}{196}\right)\)
\(\chi_{1576}(609,\cdot)\) \(-1\) \(1\) \(e\left(\frac{43}{196}\right)\) \(e\left(\frac{163}{196}\right)\) \(e\left(\frac{39}{98}\right)\) \(e\left(\frac{43}{98}\right)\) \(e\left(\frac{139}{196}\right)\) \(e\left(\frac{59}{196}\right)\) \(e\left(\frac{5}{98}\right)\) \(e\left(\frac{93}{196}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{121}{196}\right)\)
\(\chi_{1576}(641,\cdot)\) \(-1\) \(1\) \(e\left(\frac{59}{196}\right)\) \(e\left(\frac{55}{196}\right)\) \(e\left(\frac{33}{98}\right)\) \(e\left(\frac{59}{98}\right)\) \(e\left(\frac{95}{196}\right)\) \(e\left(\frac{163}{196}\right)\) \(e\left(\frac{57}{98}\right)\) \(e\left(\frac{41}{196}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{125}{196}\right)\)
\(\chi_{1576}(649,\cdot)\) \(-1\) \(1\) \(e\left(\frac{33}{196}\right)\) \(e\left(\frac{157}{196}\right)\) \(e\left(\frac{55}{98}\right)\) \(e\left(\frac{33}{98}\right)\) \(e\left(\frac{93}{196}\right)\) \(e\left(\frac{141}{196}\right)\) \(e\left(\frac{95}{98}\right)\) \(e\left(\frac{3}{196}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{143}{196}\right)\)
\(\chi_{1576}(657,\cdot)\) \(-1\) \(1\) \(e\left(\frac{167}{196}\right)\) \(e\left(\frac{159}{196}\right)\) \(e\left(\frac{17}{98}\right)\) \(e\left(\frac{69}{98}\right)\) \(e\left(\frac{43}{196}\right)\) \(e\left(\frac{179}{196}\right)\) \(e\left(\frac{65}{98}\right)\) \(e\left(\frac{33}{196}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{5}{196}\right)\)
\(\chi_{1576}(665,\cdot)\) \(-1\) \(1\) \(e\left(\frac{45}{196}\right)\) \(e\left(\frac{125}{196}\right)\) \(e\left(\frac{75}{98}\right)\) \(e\left(\frac{45}{98}\right)\) \(e\left(\frac{109}{196}\right)\) \(e\left(\frac{121}{196}\right)\) \(e\left(\frac{85}{98}\right)\) \(e\left(\frac{111}{196}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{195}{196}\right)\)
\(\chi_{1576}(673,\cdot)\) \(-1\) \(1\) \(e\left(\frac{99}{196}\right)\) \(e\left(\frac{79}{196}\right)\) \(e\left(\frac{67}{98}\right)\) \(e\left(\frac{1}{98}\right)\) \(e\left(\frac{83}{196}\right)\) \(e\left(\frac{31}{196}\right)\) \(e\left(\frac{89}{98}\right)\) \(e\left(\frac{9}{196}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{37}{196}\right)\)