Properties

Label 197.i
Modulus $197$
Conductor $197$
Order $196$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(197, base_ring=CyclotomicField(196))
 
M = H._module
 
chi = DirichletCharacter(H, M([1]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(2,197))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(197\)
Conductor: \(197\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(196\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{196})$
Fixed field: Number field defined by a degree 196 polynomial (not computed)

First 31 of 84 characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(3\) \(4\) \(5\) \(6\) \(7\) \(8\) \(9\) \(10\) \(11\)
\(\chi_{197}(2,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1}{196}\right)\) \(e\left(\frac{181}{196}\right)\) \(e\left(\frac{1}{98}\right)\) \(e\left(\frac{89}{196}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{73}{98}\right)\) \(e\left(\frac{3}{196}\right)\) \(e\left(\frac{83}{98}\right)\) \(e\left(\frac{45}{98}\right)\) \(e\left(\frac{29}{196}\right)\)
\(\chi_{197}(3,\cdot)\) \(-1\) \(1\) \(e\left(\frac{181}{196}\right)\) \(e\left(\frac{29}{196}\right)\) \(e\left(\frac{83}{98}\right)\) \(e\left(\frac{37}{196}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{81}{98}\right)\) \(e\left(\frac{151}{196}\right)\) \(e\left(\frac{29}{98}\right)\) \(e\left(\frac{11}{98}\right)\) \(e\left(\frac{153}{196}\right)\)
\(\chi_{197}(5,\cdot)\) \(-1\) \(1\) \(e\left(\frac{89}{196}\right)\) \(e\left(\frac{37}{196}\right)\) \(e\left(\frac{89}{98}\right)\) \(e\left(\frac{81}{196}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{29}{98}\right)\) \(e\left(\frac{71}{196}\right)\) \(e\left(\frac{37}{98}\right)\) \(e\left(\frac{85}{98}\right)\) \(e\left(\frac{33}{196}\right)\)
\(\chi_{197}(8,\cdot)\) \(-1\) \(1\) \(e\left(\frac{3}{196}\right)\) \(e\left(\frac{151}{196}\right)\) \(e\left(\frac{3}{98}\right)\) \(e\left(\frac{71}{196}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{23}{98}\right)\) \(e\left(\frac{9}{196}\right)\) \(e\left(\frac{53}{98}\right)\) \(e\left(\frac{37}{98}\right)\) \(e\left(\frac{87}{196}\right)\)
\(\chi_{197}(11,\cdot)\) \(-1\) \(1\) \(e\left(\frac{29}{196}\right)\) \(e\left(\frac{153}{196}\right)\) \(e\left(\frac{29}{98}\right)\) \(e\left(\frac{33}{196}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{59}{98}\right)\) \(e\left(\frac{87}{196}\right)\) \(e\left(\frac{55}{98}\right)\) \(e\left(\frac{31}{98}\right)\) \(e\left(\frac{57}{196}\right)\)
\(\chi_{197}(12,\cdot)\) \(-1\) \(1\) \(e\left(\frac{183}{196}\right)\) \(e\left(\frac{195}{196}\right)\) \(e\left(\frac{85}{98}\right)\) \(e\left(\frac{19}{196}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{31}{98}\right)\) \(e\left(\frac{157}{196}\right)\) \(e\left(\frac{97}{98}\right)\) \(e\left(\frac{3}{98}\right)\) \(e\left(\frac{15}{196}\right)\)
\(\chi_{197}(13,\cdot)\) \(-1\) \(1\) \(e\left(\frac{25}{196}\right)\) \(e\left(\frac{17}{196}\right)\) \(e\left(\frac{25}{98}\right)\) \(e\left(\frac{69}{196}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{61}{98}\right)\) \(e\left(\frac{75}{196}\right)\) \(e\left(\frac{17}{98}\right)\) \(e\left(\frac{47}{98}\right)\) \(e\left(\frac{137}{196}\right)\)
\(\chi_{197}(17,\cdot)\) \(-1\) \(1\) \(e\left(\frac{159}{196}\right)\) \(e\left(\frac{163}{196}\right)\) \(e\left(\frac{61}{98}\right)\) \(e\left(\frac{39}{196}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{43}{98}\right)\) \(e\left(\frac{85}{196}\right)\) \(e\left(\frac{65}{98}\right)\) \(e\left(\frac{1}{98}\right)\) \(e\left(\frac{103}{196}\right)\)
\(\chi_{197}(18,\cdot)\) \(-1\) \(1\) \(e\left(\frac{167}{196}\right)\) \(e\left(\frac{43}{196}\right)\) \(e\left(\frac{69}{98}\right)\) \(e\left(\frac{163}{196}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{39}{98}\right)\) \(e\left(\frac{109}{196}\right)\) \(e\left(\frac{43}{98}\right)\) \(e\left(\frac{67}{98}\right)\) \(e\left(\frac{139}{196}\right)\)
\(\chi_{197}(21,\cdot)\) \(-1\) \(1\) \(e\left(\frac{131}{196}\right)\) \(e\left(\frac{191}{196}\right)\) \(e\left(\frac{33}{98}\right)\) \(e\left(\frac{95}{196}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{57}{98}\right)\) \(e\left(\frac{1}{196}\right)\) \(e\left(\frac{93}{98}\right)\) \(e\left(\frac{15}{98}\right)\) \(e\left(\frac{75}{196}\right)\)
\(\chi_{197}(27,\cdot)\) \(-1\) \(1\) \(e\left(\frac{151}{196}\right)\) \(e\left(\frac{87}{196}\right)\) \(e\left(\frac{53}{98}\right)\) \(e\left(\frac{111}{196}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{47}{98}\right)\) \(e\left(\frac{61}{196}\right)\) \(e\left(\frac{87}{98}\right)\) \(e\left(\frac{33}{98}\right)\) \(e\left(\frac{67}{196}\right)\)
\(\chi_{197}(30,\cdot)\) \(-1\) \(1\) \(e\left(\frac{75}{196}\right)\) \(e\left(\frac{51}{196}\right)\) \(e\left(\frac{75}{98}\right)\) \(e\left(\frac{11}{196}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{85}{98}\right)\) \(e\left(\frac{29}{196}\right)\) \(e\left(\frac{51}{98}\right)\) \(e\left(\frac{43}{98}\right)\) \(e\left(\frac{19}{196}\right)\)
\(\chi_{197}(31,\cdot)\) \(-1\) \(1\) \(e\left(\frac{141}{196}\right)\) \(e\left(\frac{41}{196}\right)\) \(e\left(\frac{43}{98}\right)\) \(e\left(\frac{5}{196}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{3}{98}\right)\) \(e\left(\frac{31}{196}\right)\) \(e\left(\frac{41}{98}\right)\) \(e\left(\frac{73}{98}\right)\) \(e\left(\frac{169}{196}\right)\)
\(\chi_{197}(32,\cdot)\) \(-1\) \(1\) \(e\left(\frac{5}{196}\right)\) \(e\left(\frac{121}{196}\right)\) \(e\left(\frac{5}{98}\right)\) \(e\left(\frac{53}{196}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{71}{98}\right)\) \(e\left(\frac{15}{196}\right)\) \(e\left(\frac{23}{98}\right)\) \(e\left(\frac{29}{98}\right)\) \(e\left(\frac{145}{196}\right)\)
\(\chi_{197}(35,\cdot)\) \(-1\) \(1\) \(e\left(\frac{39}{196}\right)\) \(e\left(\frac{3}{196}\right)\) \(e\left(\frac{39}{98}\right)\) \(e\left(\frac{139}{196}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{5}{98}\right)\) \(e\left(\frac{117}{196}\right)\) \(e\left(\frac{3}{98}\right)\) \(e\left(\frac{89}{98}\right)\) \(e\left(\frac{151}{196}\right)\)
\(\chi_{197}(38,\cdot)\) \(-1\) \(1\) \(e\left(\frac{155}{196}\right)\) \(e\left(\frac{27}{196}\right)\) \(e\left(\frac{57}{98}\right)\) \(e\left(\frac{75}{196}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{45}{98}\right)\) \(e\left(\frac{73}{196}\right)\) \(e\left(\frac{27}{98}\right)\) \(e\left(\frac{17}{98}\right)\) \(e\left(\frac{183}{196}\right)\)
\(\chi_{197}(44,\cdot)\) \(-1\) \(1\) \(e\left(\frac{31}{196}\right)\) \(e\left(\frac{123}{196}\right)\) \(e\left(\frac{31}{98}\right)\) \(e\left(\frac{15}{196}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{9}{98}\right)\) \(e\left(\frac{93}{196}\right)\) \(e\left(\frac{25}{98}\right)\) \(e\left(\frac{23}{98}\right)\) \(e\left(\frac{115}{196}\right)\)
\(\chi_{197}(45,\cdot)\) \(-1\) \(1\) \(e\left(\frac{59}{196}\right)\) \(e\left(\frac{95}{196}\right)\) \(e\left(\frac{59}{98}\right)\) \(e\left(\frac{155}{196}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{93}{98}\right)\) \(e\left(\frac{177}{196}\right)\) \(e\left(\frac{95}{98}\right)\) \(e\left(\frac{9}{98}\right)\) \(e\left(\frac{143}{196}\right)\)
\(\chi_{197}(46,\cdot)\) \(-1\) \(1\) \(e\left(\frac{121}{196}\right)\) \(e\left(\frac{145}{196}\right)\) \(e\left(\frac{23}{98}\right)\) \(e\left(\frac{185}{196}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{13}{98}\right)\) \(e\left(\frac{167}{196}\right)\) \(e\left(\frac{47}{98}\right)\) \(e\left(\frac{55}{98}\right)\) \(e\left(\frac{177}{196}\right)\)
\(\chi_{197}(48,\cdot)\) \(-1\) \(1\) \(e\left(\frac{185}{196}\right)\) \(e\left(\frac{165}{196}\right)\) \(e\left(\frac{87}{98}\right)\) \(e\left(\frac{1}{196}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{79}{98}\right)\) \(e\left(\frac{163}{196}\right)\) \(e\left(\frac{67}{98}\right)\) \(e\left(\frac{93}{98}\right)\) \(e\left(\frac{73}{196}\right)\)
\(\chi_{197}(50,\cdot)\) \(-1\) \(1\) \(e\left(\frac{179}{196}\right)\) \(e\left(\frac{59}{196}\right)\) \(e\left(\frac{81}{98}\right)\) \(e\left(\frac{55}{196}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{33}{98}\right)\) \(e\left(\frac{145}{196}\right)\) \(e\left(\frac{59}{98}\right)\) \(e\left(\frac{19}{98}\right)\) \(e\left(\frac{95}{196}\right)\)
\(\chi_{197}(52,\cdot)\) \(-1\) \(1\) \(e\left(\frac{27}{196}\right)\) \(e\left(\frac{183}{196}\right)\) \(e\left(\frac{27}{98}\right)\) \(e\left(\frac{51}{196}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{11}{98}\right)\) \(e\left(\frac{81}{196}\right)\) \(e\left(\frac{85}{98}\right)\) \(e\left(\frac{39}{98}\right)\) \(e\left(\frac{195}{196}\right)\)
\(\chi_{197}(56,\cdot)\) \(-1\) \(1\) \(e\left(\frac{149}{196}\right)\) \(e\left(\frac{117}{196}\right)\) \(e\left(\frac{51}{98}\right)\) \(e\left(\frac{129}{196}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{97}{98}\right)\) \(e\left(\frac{55}{196}\right)\) \(e\left(\frac{19}{98}\right)\) \(e\left(\frac{41}{98}\right)\) \(e\left(\frac{9}{196}\right)\)
\(\chi_{197}(57,\cdot)\) \(-1\) \(1\) \(e\left(\frac{139}{196}\right)\) \(e\left(\frac{71}{196}\right)\) \(e\left(\frac{41}{98}\right)\) \(e\left(\frac{23}{196}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{53}{98}\right)\) \(e\left(\frac{25}{196}\right)\) \(e\left(\frac{71}{98}\right)\) \(e\left(\frac{81}{98}\right)\) \(e\left(\frac{111}{196}\right)\)
\(\chi_{197}(58,\cdot)\) \(-1\) \(1\) \(e\left(\frac{37}{196}\right)\) \(e\left(\frac{33}{196}\right)\) \(e\left(\frac{37}{98}\right)\) \(e\left(\frac{157}{196}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{55}{98}\right)\) \(e\left(\frac{111}{196}\right)\) \(e\left(\frac{33}{98}\right)\) \(e\left(\frac{97}{98}\right)\) \(e\left(\frac{93}{196}\right)\)
\(\chi_{197}(66,\cdot)\) \(-1\) \(1\) \(e\left(\frac{15}{196}\right)\) \(e\left(\frac{167}{196}\right)\) \(e\left(\frac{15}{98}\right)\) \(e\left(\frac{159}{196}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{17}{98}\right)\) \(e\left(\frac{45}{196}\right)\) \(e\left(\frac{69}{98}\right)\) \(e\left(\frac{87}{98}\right)\) \(e\left(\frac{43}{196}\right)\)
\(\chi_{197}(67,\cdot)\) \(-1\) \(1\) \(e\left(\frac{17}{196}\right)\) \(e\left(\frac{137}{196}\right)\) \(e\left(\frac{17}{98}\right)\) \(e\left(\frac{141}{196}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{65}{98}\right)\) \(e\left(\frac{51}{196}\right)\) \(e\left(\frac{39}{98}\right)\) \(e\left(\frac{79}{98}\right)\) \(e\left(\frac{101}{196}\right)\)
\(\chi_{197}(71,\cdot)\) \(-1\) \(1\) \(e\left(\frac{19}{196}\right)\) \(e\left(\frac{107}{196}\right)\) \(e\left(\frac{19}{98}\right)\) \(e\left(\frac{123}{196}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{15}{98}\right)\) \(e\left(\frac{57}{196}\right)\) \(e\left(\frac{9}{98}\right)\) \(e\left(\frac{71}{98}\right)\) \(e\left(\frac{159}{196}\right)\)
\(\chi_{197}(72,\cdot)\) \(-1\) \(1\) \(e\left(\frac{169}{196}\right)\) \(e\left(\frac{13}{196}\right)\) \(e\left(\frac{71}{98}\right)\) \(e\left(\frac{145}{196}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{87}{98}\right)\) \(e\left(\frac{115}{196}\right)\) \(e\left(\frac{13}{98}\right)\) \(e\left(\frac{59}{98}\right)\) \(e\left(\frac{1}{196}\right)\)
\(\chi_{197}(73,\cdot)\) \(-1\) \(1\) \(e\left(\frac{45}{196}\right)\) \(e\left(\frac{109}{196}\right)\) \(e\left(\frac{45}{98}\right)\) \(e\left(\frac{85}{196}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{51}{98}\right)\) \(e\left(\frac{135}{196}\right)\) \(e\left(\frac{11}{98}\right)\) \(e\left(\frac{65}{98}\right)\) \(e\left(\frac{129}{196}\right)\)
\(\chi_{197}(74,\cdot)\) \(-1\) \(1\) \(e\left(\frac{193}{196}\right)\) \(e\left(\frac{45}{196}\right)\) \(e\left(\frac{95}{98}\right)\) \(e\left(\frac{125}{196}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{75}{98}\right)\) \(e\left(\frac{187}{196}\right)\) \(e\left(\frac{45}{98}\right)\) \(e\left(\frac{61}{98}\right)\) \(e\left(\frac{109}{196}\right)\)