Properties

Label 1576.bf
Modulus $1576$
Conductor $1576$
Order $98$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1576, base_ring=CyclotomicField(98)) M = H._module chi = DirichletCharacter(H, M([0,49,18])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(29,1576)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(1576\)
Conductor: \(1576\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(98\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{49})$
Fixed field: Number field defined by a degree 98 polynomial

First 31 of 42 characters in Galois orbit

Character \(-1\) \(1\) \(3\) \(5\) \(7\) \(9\) \(11\) \(13\) \(15\) \(17\) \(19\) \(21\)
\(\chi_{1576}(29,\cdot)\) \(1\) \(1\) \(e\left(\frac{73}{98}\right)\) \(e\left(\frac{83}{98}\right)\) \(e\left(\frac{40}{49}\right)\) \(e\left(\frac{24}{49}\right)\) \(e\left(\frac{81}{98}\right)\) \(e\left(\frac{9}{98}\right)\) \(e\left(\frac{29}{49}\right)\) \(e\left(\frac{10}{49}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{55}{98}\right)\)
\(\chi_{1576}(37,\cdot)\) \(1\) \(1\) \(e\left(\frac{79}{98}\right)\) \(e\left(\frac{67}{98}\right)\) \(e\left(\frac{1}{49}\right)\) \(e\left(\frac{30}{49}\right)\) \(e\left(\frac{89}{98}\right)\) \(e\left(\frac{97}{98}\right)\) \(e\left(\frac{24}{49}\right)\) \(e\left(\frac{37}{49}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{81}{98}\right)\)
\(\chi_{1576}(53,\cdot)\) \(1\) \(1\) \(e\left(\frac{97}{98}\right)\) \(e\left(\frac{19}{98}\right)\) \(e\left(\frac{31}{49}\right)\) \(e\left(\frac{48}{49}\right)\) \(e\left(\frac{15}{98}\right)\) \(e\left(\frac{67}{98}\right)\) \(e\left(\frac{9}{49}\right)\) \(e\left(\frac{20}{49}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{61}{98}\right)\)
\(\chi_{1576}(61,\cdot)\) \(1\) \(1\) \(e\left(\frac{59}{98}\right)\) \(e\left(\frac{55}{98}\right)\) \(e\left(\frac{33}{49}\right)\) \(e\left(\frac{10}{49}\right)\) \(e\left(\frac{95}{98}\right)\) \(e\left(\frac{65}{98}\right)\) \(e\left(\frac{8}{49}\right)\) \(e\left(\frac{45}{49}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{27}{98}\right)\)
\(\chi_{1576}(85,\cdot)\) \(1\) \(1\) \(e\left(\frac{51}{98}\right)\) \(e\left(\frac{11}{98}\right)\) \(e\left(\frac{36}{49}\right)\) \(e\left(\frac{2}{49}\right)\) \(e\left(\frac{19}{98}\right)\) \(e\left(\frac{13}{98}\right)\) \(e\left(\frac{31}{49}\right)\) \(e\left(\frac{9}{49}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{25}{98}\right)\)
\(\chi_{1576}(101,\cdot)\) \(1\) \(1\) \(e\left(\frac{75}{98}\right)\) \(e\left(\frac{45}{98}\right)\) \(e\left(\frac{27}{49}\right)\) \(e\left(\frac{26}{49}\right)\) \(e\left(\frac{51}{98}\right)\) \(e\left(\frac{71}{98}\right)\) \(e\left(\frac{11}{49}\right)\) \(e\left(\frac{19}{49}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{31}{98}\right)\)
\(\chi_{1576}(133,\cdot)\) \(1\) \(1\) \(e\left(\frac{53}{98}\right)\) \(e\left(\frac{71}{98}\right)\) \(e\left(\frac{23}{49}\right)\) \(e\left(\frac{4}{49}\right)\) \(e\left(\frac{87}{98}\right)\) \(e\left(\frac{75}{98}\right)\) \(e\left(\frac{13}{49}\right)\) \(e\left(\frac{18}{49}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{1}{98}\right)\)
\(\chi_{1576}(213,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{98}\right)\) \(e\left(\frac{31}{98}\right)\) \(e\left(\frac{48}{49}\right)\) \(e\left(\frac{19}{49}\right)\) \(e\left(\frac{9}{98}\right)\) \(e\left(\frac{1}{98}\right)\) \(e\left(\frac{25}{49}\right)\) \(e\left(\frac{12}{49}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{17}{98}\right)\)
\(\chi_{1576}(221,\cdot)\) \(1\) \(1\) \(e\left(\frac{41}{98}\right)\) \(e\left(\frac{5}{98}\right)\) \(e\left(\frac{3}{49}\right)\) \(e\left(\frac{41}{49}\right)\) \(e\left(\frac{71}{98}\right)\) \(e\left(\frac{95}{98}\right)\) \(e\left(\frac{23}{49}\right)\) \(e\left(\frac{13}{49}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{47}{98}\right)\)
\(\chi_{1576}(237,\cdot)\) \(1\) \(1\) \(e\left(\frac{45}{98}\right)\) \(e\left(\frac{27}{98}\right)\) \(e\left(\frac{26}{49}\right)\) \(e\left(\frac{45}{49}\right)\) \(e\left(\frac{11}{98}\right)\) \(e\left(\frac{23}{98}\right)\) \(e\left(\frac{36}{49}\right)\) \(e\left(\frac{31}{49}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{97}{98}\right)\)
\(\chi_{1576}(285,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{98}\right)\) \(e\left(\frac{3}{98}\right)\) \(e\left(\frac{41}{49}\right)\) \(e\left(\frac{5}{49}\right)\) \(e\left(\frac{23}{98}\right)\) \(e\left(\frac{57}{98}\right)\) \(e\left(\frac{4}{49}\right)\) \(e\left(\frac{47}{49}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{87}{98}\right)\)
\(\chi_{1576}(445,\cdot)\) \(1\) \(1\) \(e\left(\frac{47}{98}\right)\) \(e\left(\frac{87}{98}\right)\) \(e\left(\frac{13}{49}\right)\) \(e\left(\frac{47}{49}\right)\) \(e\left(\frac{79}{98}\right)\) \(e\left(\frac{85}{98}\right)\) \(e\left(\frac{18}{49}\right)\) \(e\left(\frac{40}{49}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{73}{98}\right)\)
\(\chi_{1576}(453,\cdot)\) \(1\) \(1\) \(e\left(\frac{87}{98}\right)\) \(e\left(\frac{13}{98}\right)\) \(e\left(\frac{47}{49}\right)\) \(e\left(\frac{38}{49}\right)\) \(e\left(\frac{67}{98}\right)\) \(e\left(\frac{51}{98}\right)\) \(e\left(\frac{1}{49}\right)\) \(e\left(\frac{24}{49}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{83}{98}\right)\)
\(\chi_{1576}(565,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{98}\right)\) \(e\left(\frac{79}{98}\right)\) \(e\left(\frac{18}{49}\right)\) \(e\left(\frac{1}{49}\right)\) \(e\left(\frac{83}{98}\right)\) \(e\left(\frac{31}{98}\right)\) \(e\left(\frac{40}{49}\right)\) \(e\left(\frac{29}{49}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{37}{98}\right)\)
\(\chi_{1576}(581,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{98}\right)\) \(e\left(\frac{85}{98}\right)\) \(e\left(\frac{2}{49}\right)\) \(e\left(\frac{11}{49}\right)\) \(e\left(\frac{31}{98}\right)\) \(e\left(\frac{47}{98}\right)\) \(e\left(\frac{48}{49}\right)\) \(e\left(\frac{25}{49}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{15}{98}\right)\)
\(\chi_{1576}(645,\cdot)\) \(1\) \(1\) \(e\left(\frac{85}{98}\right)\) \(e\left(\frac{51}{98}\right)\) \(e\left(\frac{11}{49}\right)\) \(e\left(\frac{36}{49}\right)\) \(e\left(\frac{97}{98}\right)\) \(e\left(\frac{87}{98}\right)\) \(e\left(\frac{19}{49}\right)\) \(e\left(\frac{15}{49}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{9}{98}\right)\)
\(\chi_{1576}(661,\cdot)\) \(1\) \(1\) \(e\left(\frac{43}{98}\right)\) \(e\left(\frac{65}{98}\right)\) \(e\left(\frac{39}{49}\right)\) \(e\left(\frac{43}{49}\right)\) \(e\left(\frac{41}{98}\right)\) \(e\left(\frac{59}{98}\right)\) \(e\left(\frac{5}{49}\right)\) \(e\left(\frac{22}{49}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{23}{98}\right)\)
\(\chi_{1576}(733,\cdot)\) \(1\) \(1\) \(e\left(\frac{95}{98}\right)\) \(e\left(\frac{57}{98}\right)\) \(e\left(\frac{44}{49}\right)\) \(e\left(\frac{46}{49}\right)\) \(e\left(\frac{45}{98}\right)\) \(e\left(\frac{5}{98}\right)\) \(e\left(\frac{27}{49}\right)\) \(e\left(\frac{11}{49}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{85}{98}\right)\)
\(\chi_{1576}(741,\cdot)\) \(1\) \(1\) \(e\left(\frac{93}{98}\right)\) \(e\left(\frac{95}{98}\right)\) \(e\left(\frac{8}{49}\right)\) \(e\left(\frac{44}{49}\right)\) \(e\left(\frac{75}{98}\right)\) \(e\left(\frac{41}{98}\right)\) \(e\left(\frac{45}{49}\right)\) \(e\left(\frac{2}{49}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{11}{98}\right)\)
\(\chi_{1576}(749,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{98}\right)\) \(e\left(\frac{53}{98}\right)\) \(e\left(\frac{22}{49}\right)\) \(e\left(\frac{23}{49}\right)\) \(e\left(\frac{47}{98}\right)\) \(e\left(\frac{27}{98}\right)\) \(e\left(\frac{38}{49}\right)\) \(e\left(\frac{30}{49}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{67}{98}\right)\)
\(\chi_{1576}(773,\cdot)\) \(1\) \(1\) \(e\left(\frac{33}{98}\right)\) \(e\left(\frac{59}{98}\right)\) \(e\left(\frac{6}{49}\right)\) \(e\left(\frac{33}{49}\right)\) \(e\left(\frac{93}{98}\right)\) \(e\left(\frac{43}{98}\right)\) \(e\left(\frac{46}{49}\right)\) \(e\left(\frac{26}{49}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{45}{98}\right)\)
\(\chi_{1576}(781,\cdot)\) \(1\) \(1\) \(e\left(\frac{81}{98}\right)\) \(e\left(\frac{29}{98}\right)\) \(e\left(\frac{37}{49}\right)\) \(e\left(\frac{32}{49}\right)\) \(e\left(\frac{59}{98}\right)\) \(e\left(\frac{61}{98}\right)\) \(e\left(\frac{6}{49}\right)\) \(e\left(\frac{46}{49}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{57}{98}\right)\)
\(\chi_{1576}(837,\cdot)\) \(1\) \(1\) \(e\left(\frac{15}{98}\right)\) \(e\left(\frac{9}{98}\right)\) \(e\left(\frac{25}{49}\right)\) \(e\left(\frac{15}{49}\right)\) \(e\left(\frac{69}{98}\right)\) \(e\left(\frac{73}{98}\right)\) \(e\left(\frac{12}{49}\right)\) \(e\left(\frac{43}{49}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{65}{98}\right)\)
\(\chi_{1576}(869,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{98}\right)\) \(e\left(\frac{25}{98}\right)\) \(e\left(\frac{15}{49}\right)\) \(e\left(\frac{9}{49}\right)\) \(e\left(\frac{61}{98}\right)\) \(e\left(\frac{83}{98}\right)\) \(e\left(\frac{17}{49}\right)\) \(e\left(\frac{16}{49}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{39}{98}\right)\)
\(\chi_{1576}(893,\cdot)\) \(1\) \(1\) \(e\left(\frac{65}{98}\right)\) \(e\left(\frac{39}{98}\right)\) \(e\left(\frac{43}{49}\right)\) \(e\left(\frac{16}{49}\right)\) \(e\left(\frac{5}{98}\right)\) \(e\left(\frac{55}{98}\right)\) \(e\left(\frac{3}{49}\right)\) \(e\left(\frac{23}{49}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{53}{98}\right)\)
\(\chi_{1576}(981,\cdot)\) \(1\) \(1\) \(e\left(\frac{83}{98}\right)\) \(e\left(\frac{89}{98}\right)\) \(e\left(\frac{24}{49}\right)\) \(e\left(\frac{34}{49}\right)\) \(e\left(\frac{29}{98}\right)\) \(e\left(\frac{25}{98}\right)\) \(e\left(\frac{37}{49}\right)\) \(e\left(\frac{6}{49}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{33}{98}\right)\)
\(\chi_{1576}(1013,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{98}\right)\) \(e\left(\frac{69}{98}\right)\) \(e\left(\frac{12}{49}\right)\) \(e\left(\frac{17}{49}\right)\) \(e\left(\frac{39}{98}\right)\) \(e\left(\frac{37}{98}\right)\) \(e\left(\frac{43}{49}\right)\) \(e\left(\frac{3}{49}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{41}{98}\right)\)
\(\chi_{1576}(1045,\cdot)\) \(1\) \(1\) \(e\left(\frac{67}{98}\right)\) \(e\left(\frac{1}{98}\right)\) \(e\left(\frac{30}{49}\right)\) \(e\left(\frac{18}{49}\right)\) \(e\left(\frac{73}{98}\right)\) \(e\left(\frac{19}{98}\right)\) \(e\left(\frac{34}{49}\right)\) \(e\left(\frac{32}{49}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{29}{98}\right)\)
\(\chi_{1576}(1061,\cdot)\) \(1\) \(1\) \(e\left(\frac{55}{98}\right)\) \(e\left(\frac{33}{98}\right)\) \(e\left(\frac{10}{49}\right)\) \(e\left(\frac{6}{49}\right)\) \(e\left(\frac{57}{98}\right)\) \(e\left(\frac{39}{98}\right)\) \(e\left(\frac{44}{49}\right)\) \(e\left(\frac{27}{49}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{75}{98}\right)\)
\(\chi_{1576}(1085,\cdot)\) \(1\) \(1\) \(e\left(\frac{71}{98}\right)\) \(e\left(\frac{23}{98}\right)\) \(e\left(\frac{4}{49}\right)\) \(e\left(\frac{22}{49}\right)\) \(e\left(\frac{13}{98}\right)\) \(e\left(\frac{45}{98}\right)\) \(e\left(\frac{47}{49}\right)\) \(e\left(\frac{1}{49}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{79}{98}\right)\)
\(\chi_{1576}(1117,\cdot)\) \(1\) \(1\) \(e\left(\frac{27}{98}\right)\) \(e\left(\frac{75}{98}\right)\) \(e\left(\frac{45}{49}\right)\) \(e\left(\frac{27}{49}\right)\) \(e\left(\frac{85}{98}\right)\) \(e\left(\frac{53}{98}\right)\) \(e\left(\frac{2}{49}\right)\) \(e\left(\frac{48}{49}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{19}{98}\right)\)