sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1576, base_ring=CyclotomicField(98))
M = H._module
chi = DirichletCharacter(H, M([0,49,36]))
pari:[g,chi] = znchar(Mod(53,1576))
| Modulus: | \(1576\) | |
| Conductor: | \(1576\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(98\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{1576}(29,\cdot)\)
\(\chi_{1576}(37,\cdot)\)
\(\chi_{1576}(53,\cdot)\)
\(\chi_{1576}(61,\cdot)\)
\(\chi_{1576}(85,\cdot)\)
\(\chi_{1576}(101,\cdot)\)
\(\chi_{1576}(133,\cdot)\)
\(\chi_{1576}(213,\cdot)\)
\(\chi_{1576}(221,\cdot)\)
\(\chi_{1576}(237,\cdot)\)
\(\chi_{1576}(285,\cdot)\)
\(\chi_{1576}(445,\cdot)\)
\(\chi_{1576}(453,\cdot)\)
\(\chi_{1576}(565,\cdot)\)
\(\chi_{1576}(581,\cdot)\)
\(\chi_{1576}(645,\cdot)\)
\(\chi_{1576}(661,\cdot)\)
\(\chi_{1576}(733,\cdot)\)
\(\chi_{1576}(741,\cdot)\)
\(\chi_{1576}(749,\cdot)\)
\(\chi_{1576}(773,\cdot)\)
\(\chi_{1576}(781,\cdot)\)
\(\chi_{1576}(837,\cdot)\)
\(\chi_{1576}(869,\cdot)\)
\(\chi_{1576}(893,\cdot)\)
\(\chi_{1576}(981,\cdot)\)
\(\chi_{1576}(1013,\cdot)\)
\(\chi_{1576}(1045,\cdot)\)
\(\chi_{1576}(1061,\cdot)\)
\(\chi_{1576}(1085,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1183,789,593)\) → \((1,-1,e\left(\frac{18}{49}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(19\) | \(21\) |
| \( \chi_{ 1576 }(53, a) \) |
\(1\) | \(1\) | \(e\left(\frac{97}{98}\right)\) | \(e\left(\frac{19}{98}\right)\) | \(e\left(\frac{31}{49}\right)\) | \(e\left(\frac{48}{49}\right)\) | \(e\left(\frac{15}{98}\right)\) | \(e\left(\frac{67}{98}\right)\) | \(e\left(\frac{9}{49}\right)\) | \(e\left(\frac{20}{49}\right)\) | \(e\left(\frac{1}{14}\right)\) | \(e\left(\frac{61}{98}\right)\) |
sage:chi.jacobi_sum(n)