sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1560, base_ring=CyclotomicField(12))
M = H._module
chi = DirichletCharacter(H, M([6,0,6,0,11]))
pari:[g,chi] = znchar(Mod(1151,1560))
\(\chi_{1560}(71,\cdot)\)
\(\chi_{1560}(431,\cdot)\)
\(\chi_{1560}(791,\cdot)\)
\(\chi_{1560}(1151,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((391,781,521,937,1081)\) → \((-1,1,-1,1,e\left(\frac{11}{12}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(7\) | \(11\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) | \(43\) |
| \( \chi_{ 1560 }(1151, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(-i\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{1}{3}\right)\) |
sage:chi.jacobi_sum(n)