sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1521, base_ring=CyclotomicField(78))
M = H._module
chi = DirichletCharacter(H, M([13,73]))
pari:[g,chi] = znchar(Mod(524,1521))
| Modulus: | \(1521\) | |
| Conductor: | \(1521\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(78\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{1521}(56,\cdot)\)
\(\chi_{1521}(140,\cdot)\)
\(\chi_{1521}(173,\cdot)\)
\(\chi_{1521}(257,\cdot)\)
\(\chi_{1521}(290,\cdot)\)
\(\chi_{1521}(374,\cdot)\)
\(\chi_{1521}(407,\cdot)\)
\(\chi_{1521}(491,\cdot)\)
\(\chi_{1521}(524,\cdot)\)
\(\chi_{1521}(608,\cdot)\)
\(\chi_{1521}(641,\cdot)\)
\(\chi_{1521}(725,\cdot)\)
\(\chi_{1521}(758,\cdot)\)
\(\chi_{1521}(842,\cdot)\)
\(\chi_{1521}(875,\cdot)\)
\(\chi_{1521}(959,\cdot)\)
\(\chi_{1521}(1076,\cdot)\)
\(\chi_{1521}(1109,\cdot)\)
\(\chi_{1521}(1193,\cdot)\)
\(\chi_{1521}(1226,\cdot)\)
\(\chi_{1521}(1310,\cdot)\)
\(\chi_{1521}(1343,\cdot)\)
\(\chi_{1521}(1427,\cdot)\)
\(\chi_{1521}(1460,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((677,847)\) → \((e\left(\frac{1}{6}\right),e\left(\frac{73}{78}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(7\) | \(8\) | \(10\) | \(11\) | \(14\) | \(16\) | \(17\) |
| \( \chi_{ 1521 }(524, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{4}{39}\right)\) | \(e\left(\frac{8}{39}\right)\) | \(e\left(\frac{10}{39}\right)\) | \(e\left(\frac{21}{26}\right)\) | \(e\left(\frac{4}{13}\right)\) | \(e\left(\frac{14}{39}\right)\) | \(e\left(\frac{22}{39}\right)\) | \(e\left(\frac{71}{78}\right)\) | \(e\left(\frac{16}{39}\right)\) | \(e\left(\frac{11}{78}\right)\) |
sage:chi.jacobi_sum(n)