![Copy content]() sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1521, base_ring=CyclotomicField(78))
M = H._module
chi = DirichletCharacter(H, M([13,7]))
        sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1521, base_ring=CyclotomicField(78))
M = H._module
chi = DirichletCharacter(H, M([13,7]))
         
     
    
    
        ![Copy content]() pari:[g,chi] = znchar(Mod(1343,1521))
        pari:[g,chi] = znchar(Mod(1343,1521))
         
     
    
  
   | Modulus: | \(1521\) |  | 
   | Conductor: | \(1521\) | 
        ![Copy content]() sage:chi.conductor()   
        ![Copy content]() pari:znconreyconductor(g,chi)   | 
   | Order: | \(78\) | 
        ![Copy content]() sage:chi.multiplicative_order()   
        ![Copy content]() pari:charorder(g,chi)   | 
   | Real: | no | 
   | Primitive: | yes | 
        ![Copy content]() sage:chi.is_primitive()   
        ![Copy content]() pari:#znconreyconductor(g,chi)==1   | 
     | Minimal: | yes | 
       | Parity: | odd | 
        ![Copy content]() sage:chi.is_odd()   
        ![Copy content]() pari:zncharisodd(g,chi)   | 
   
  \(\chi_{1521}(56,\cdot)\)
  \(\chi_{1521}(140,\cdot)\)
  \(\chi_{1521}(173,\cdot)\)
  \(\chi_{1521}(257,\cdot)\)
  \(\chi_{1521}(290,\cdot)\)
  \(\chi_{1521}(374,\cdot)\)
  \(\chi_{1521}(407,\cdot)\)
  \(\chi_{1521}(491,\cdot)\)
  \(\chi_{1521}(524,\cdot)\)
  \(\chi_{1521}(608,\cdot)\)
  \(\chi_{1521}(641,\cdot)\)
  \(\chi_{1521}(725,\cdot)\)
  \(\chi_{1521}(758,\cdot)\)
  \(\chi_{1521}(842,\cdot)\)
  \(\chi_{1521}(875,\cdot)\)
  \(\chi_{1521}(959,\cdot)\)
  \(\chi_{1521}(1076,\cdot)\)
  \(\chi_{1521}(1109,\cdot)\)
  \(\chi_{1521}(1193,\cdot)\)
  \(\chi_{1521}(1226,\cdot)\)
  \(\chi_{1521}(1310,\cdot)\)
  \(\chi_{1521}(1343,\cdot)\)
  \(\chi_{1521}(1427,\cdot)\)
  \(\chi_{1521}(1460,\cdot)\)
    
        ![Copy content]() sage:chi.galois_orbit()
        sage:chi.galois_orbit()
         
     
    
    
        ![Copy content]() pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
        pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
         
     
    
 
\((677,847)\) → \((e\left(\frac{1}{6}\right),e\left(\frac{7}{78}\right))\)
  
    
      
        | \(a\) | \(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(7\) | \(8\) | \(10\) | \(11\) | \(14\) | \(16\) | \(17\) | 
    
    
      | \( \chi_{ 1521 }(1343, a) \) | \(-1\) | \(1\) | \(e\left(\frac{10}{39}\right)\) | \(e\left(\frac{20}{39}\right)\) | \(e\left(\frac{25}{39}\right)\) | \(e\left(\frac{7}{26}\right)\) | \(e\left(\frac{10}{13}\right)\) | \(e\left(\frac{35}{39}\right)\) | \(e\left(\frac{16}{39}\right)\) | \(e\left(\frac{41}{78}\right)\) | \(e\left(\frac{1}{39}\right)\) | \(e\left(\frac{47}{78}\right)\) | 
  
 
    
        ![Copy content]() sage:chi.jacobi_sum(n)
        sage:chi.jacobi_sum(n)