Properties

Label 14700.gp
Modulus $14700$
Conductor $1225$
Order $210$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(14700, base_ring=CyclotomicField(210)) M = H._module chi = DirichletCharacter(H, M([0,0,168,55])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(61,14700)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(14700\)
Conductor: \(1225\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(210\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 1225.br
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{105})$
Fixed field: Number field defined by a degree 210 polynomial (not computed)

First 31 of 48 characters in Galois orbit

Character \(-1\) \(1\) \(11\) \(13\) \(17\) \(19\) \(23\) \(29\) \(31\) \(37\) \(41\) \(43\)
\(\chi_{14700}(61,\cdot)\) \(-1\) \(1\) \(e\left(\frac{29}{105}\right)\) \(e\left(\frac{59}{70}\right)\) \(e\left(\frac{199}{210}\right)\) \(e\left(\frac{17}{30}\right)\) \(e\left(\frac{79}{105}\right)\) \(e\left(\frac{11}{35}\right)\) \(e\left(\frac{7}{30}\right)\) \(e\left(\frac{61}{105}\right)\) \(e\left(\frac{9}{70}\right)\) \(e\left(\frac{4}{7}\right)\)
\(\chi_{14700}(241,\cdot)\) \(-1\) \(1\) \(e\left(\frac{76}{105}\right)\) \(e\left(\frac{11}{70}\right)\) \(e\left(\frac{11}{210}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{26}{105}\right)\) \(e\left(\frac{24}{35}\right)\) \(e\left(\frac{23}{30}\right)\) \(e\left(\frac{44}{105}\right)\) \(e\left(\frac{61}{70}\right)\) \(e\left(\frac{3}{7}\right)\)
\(\chi_{14700}(481,\cdot)\) \(-1\) \(1\) \(e\left(\frac{32}{105}\right)\) \(e\left(\frac{47}{70}\right)\) \(e\left(\frac{187}{210}\right)\) \(e\left(\frac{11}{30}\right)\) \(e\left(\frac{22}{105}\right)\) \(e\left(\frac{23}{35}\right)\) \(e\left(\frac{1}{30}\right)\) \(e\left(\frac{13}{105}\right)\) \(e\left(\frac{57}{70}\right)\) \(e\left(\frac{2}{7}\right)\)
\(\chi_{14700}(661,\cdot)\) \(-1\) \(1\) \(e\left(\frac{4}{105}\right)\) \(e\left(\frac{19}{70}\right)\) \(e\left(\frac{89}{210}\right)\) \(e\left(\frac{7}{30}\right)\) \(e\left(\frac{29}{105}\right)\) \(e\left(\frac{16}{35}\right)\) \(e\left(\frac{17}{30}\right)\) \(e\left(\frac{41}{105}\right)\) \(e\left(\frac{29}{70}\right)\) \(e\left(\frac{2}{7}\right)\)
\(\chi_{14700}(1081,\cdot)\) \(-1\) \(1\) \(e\left(\frac{37}{105}\right)\) \(e\left(\frac{27}{70}\right)\) \(e\left(\frac{167}{210}\right)\) \(e\left(\frac{1}{30}\right)\) \(e\left(\frac{32}{105}\right)\) \(e\left(\frac{8}{35}\right)\) \(e\left(\frac{11}{30}\right)\) \(e\left(\frac{38}{105}\right)\) \(e\left(\frac{67}{70}\right)\) \(e\left(\frac{1}{7}\right)\)
\(\chi_{14700}(1321,\cdot)\) \(-1\) \(1\) \(e\left(\frac{38}{105}\right)\) \(e\left(\frac{23}{70}\right)\) \(e\left(\frac{163}{210}\right)\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{13}{105}\right)\) \(e\left(\frac{12}{35}\right)\) \(e\left(\frac{19}{30}\right)\) \(e\left(\frac{22}{105}\right)\) \(e\left(\frac{13}{70}\right)\) \(e\left(\frac{5}{7}\right)\)
\(\chi_{14700}(1741,\cdot)\) \(-1\) \(1\) \(e\left(\frac{41}{105}\right)\) \(e\left(\frac{11}{70}\right)\) \(e\left(\frac{151}{210}\right)\) \(e\left(\frac{23}{30}\right)\) \(e\left(\frac{61}{105}\right)\) \(e\left(\frac{24}{35}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{79}{105}\right)\) \(e\left(\frac{61}{70}\right)\) \(e\left(\frac{3}{7}\right)\)
\(\chi_{14700}(1921,\cdot)\) \(-1\) \(1\) \(e\left(\frac{103}{105}\right)\) \(e\left(\frac{43}{70}\right)\) \(e\left(\frac{113}{210}\right)\) \(e\left(\frac{19}{30}\right)\) \(e\left(\frac{38}{105}\right)\) \(e\left(\frac{27}{35}\right)\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{32}{105}\right)\) \(e\left(\frac{3}{70}\right)\) \(e\left(\frac{6}{7}\right)\)
\(\chi_{14700}(2161,\cdot)\) \(-1\) \(1\) \(e\left(\frac{44}{105}\right)\) \(e\left(\frac{69}{70}\right)\) \(e\left(\frac{139}{210}\right)\) \(e\left(\frac{17}{30}\right)\) \(e\left(\frac{4}{105}\right)\) \(e\left(\frac{1}{35}\right)\) \(e\left(\frac{7}{30}\right)\) \(e\left(\frac{31}{105}\right)\) \(e\left(\frac{39}{70}\right)\) \(e\left(\frac{1}{7}\right)\)
\(\chi_{14700}(2341,\cdot)\) \(-1\) \(1\) \(e\left(\frac{31}{105}\right)\) \(e\left(\frac{51}{70}\right)\) \(e\left(\frac{191}{210}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{41}{105}\right)\) \(e\left(\frac{19}{35}\right)\) \(e\left(\frac{23}{30}\right)\) \(e\left(\frac{29}{105}\right)\) \(e\left(\frac{41}{70}\right)\) \(e\left(\frac{5}{7}\right)\)
\(\chi_{14700}(2581,\cdot)\) \(-1\) \(1\) \(e\left(\frac{47}{105}\right)\) \(e\left(\frac{57}{70}\right)\) \(e\left(\frac{127}{210}\right)\) \(e\left(\frac{11}{30}\right)\) \(e\left(\frac{52}{105}\right)\) \(e\left(\frac{13}{35}\right)\) \(e\left(\frac{1}{30}\right)\) \(e\left(\frac{88}{105}\right)\) \(e\left(\frac{17}{70}\right)\) \(e\left(\frac{6}{7}\right)\)
\(\chi_{14700}(2761,\cdot)\) \(-1\) \(1\) \(e\left(\frac{64}{105}\right)\) \(e\left(\frac{59}{70}\right)\) \(e\left(\frac{59}{210}\right)\) \(e\left(\frac{7}{30}\right)\) \(e\left(\frac{44}{105}\right)\) \(e\left(\frac{11}{35}\right)\) \(e\left(\frac{17}{30}\right)\) \(e\left(\frac{26}{105}\right)\) \(e\left(\frac{9}{70}\right)\) \(e\left(\frac{4}{7}\right)\)
\(\chi_{14700}(3181,\cdot)\) \(-1\) \(1\) \(e\left(\frac{97}{105}\right)\) \(e\left(\frac{67}{70}\right)\) \(e\left(\frac{137}{210}\right)\) \(e\left(\frac{1}{30}\right)\) \(e\left(\frac{47}{105}\right)\) \(e\left(\frac{3}{35}\right)\) \(e\left(\frac{11}{30}\right)\) \(e\left(\frac{23}{105}\right)\) \(e\left(\frac{47}{70}\right)\) \(e\left(\frac{3}{7}\right)\)
\(\chi_{14700}(3421,\cdot)\) \(-1\) \(1\) \(e\left(\frac{53}{105}\right)\) \(e\left(\frac{33}{70}\right)\) \(e\left(\frac{103}{210}\right)\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{43}{105}\right)\) \(e\left(\frac{2}{35}\right)\) \(e\left(\frac{19}{30}\right)\) \(e\left(\frac{97}{105}\right)\) \(e\left(\frac{43}{70}\right)\) \(e\left(\frac{2}{7}\right)\)
\(\chi_{14700}(4021,\cdot)\) \(-1\) \(1\) \(e\left(\frac{58}{105}\right)\) \(e\left(\frac{13}{70}\right)\) \(e\left(\frac{83}{210}\right)\) \(e\left(\frac{19}{30}\right)\) \(e\left(\frac{53}{105}\right)\) \(e\left(\frac{22}{35}\right)\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{17}{105}\right)\) \(e\left(\frac{53}{70}\right)\) \(e\left(\frac{1}{7}\right)\)
\(\chi_{14700}(4261,\cdot)\) \(-1\) \(1\) \(e\left(\frac{59}{105}\right)\) \(e\left(\frac{9}{70}\right)\) \(e\left(\frac{79}{210}\right)\) \(e\left(\frac{17}{30}\right)\) \(e\left(\frac{34}{105}\right)\) \(e\left(\frac{26}{35}\right)\) \(e\left(\frac{7}{30}\right)\) \(e\left(\frac{1}{105}\right)\) \(e\left(\frac{69}{70}\right)\) \(e\left(\frac{5}{7}\right)\)
\(\chi_{14700}(4681,\cdot)\) \(-1\) \(1\) \(e\left(\frac{62}{105}\right)\) \(e\left(\frac{67}{70}\right)\) \(e\left(\frac{67}{210}\right)\) \(e\left(\frac{11}{30}\right)\) \(e\left(\frac{82}{105}\right)\) \(e\left(\frac{3}{35}\right)\) \(e\left(\frac{1}{30}\right)\) \(e\left(\frac{58}{105}\right)\) \(e\left(\frac{47}{70}\right)\) \(e\left(\frac{3}{7}\right)\)
\(\chi_{14700}(4861,\cdot)\) \(-1\) \(1\) \(e\left(\frac{19}{105}\right)\) \(e\left(\frac{29}{70}\right)\) \(e\left(\frac{29}{210}\right)\) \(e\left(\frac{7}{30}\right)\) \(e\left(\frac{59}{105}\right)\) \(e\left(\frac{6}{35}\right)\) \(e\left(\frac{17}{30}\right)\) \(e\left(\frac{11}{105}\right)\) \(e\left(\frac{59}{70}\right)\) \(e\left(\frac{6}{7}\right)\)
\(\chi_{14700}(5281,\cdot)\) \(-1\) \(1\) \(e\left(\frac{52}{105}\right)\) \(e\left(\frac{37}{70}\right)\) \(e\left(\frac{107}{210}\right)\) \(e\left(\frac{1}{30}\right)\) \(e\left(\frac{62}{105}\right)\) \(e\left(\frac{33}{35}\right)\) \(e\left(\frac{11}{30}\right)\) \(e\left(\frac{8}{105}\right)\) \(e\left(\frac{27}{70}\right)\) \(e\left(\frac{5}{7}\right)\)
\(\chi_{14700}(5521,\cdot)\) \(-1\) \(1\) \(e\left(\frac{68}{105}\right)\) \(e\left(\frac{43}{70}\right)\) \(e\left(\frac{43}{210}\right)\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{73}{105}\right)\) \(e\left(\frac{27}{35}\right)\) \(e\left(\frac{19}{30}\right)\) \(e\left(\frac{67}{105}\right)\) \(e\left(\frac{3}{70}\right)\) \(e\left(\frac{6}{7}\right)\)
\(\chi_{14700}(5941,\cdot)\) \(-1\) \(1\) \(e\left(\frac{71}{105}\right)\) \(e\left(\frac{31}{70}\right)\) \(e\left(\frac{31}{210}\right)\) \(e\left(\frac{23}{30}\right)\) \(e\left(\frac{16}{105}\right)\) \(e\left(\frac{4}{35}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{19}{105}\right)\) \(e\left(\frac{51}{70}\right)\) \(e\left(\frac{4}{7}\right)\)
\(\chi_{14700}(6121,\cdot)\) \(-1\) \(1\) \(e\left(\frac{13}{105}\right)\) \(e\left(\frac{53}{70}\right)\) \(e\left(\frac{53}{210}\right)\) \(e\left(\frac{19}{30}\right)\) \(e\left(\frac{68}{105}\right)\) \(e\left(\frac{17}{35}\right)\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{2}{105}\right)\) \(e\left(\frac{33}{70}\right)\) \(e\left(\frac{3}{7}\right)\)
\(\chi_{14700}(6361,\cdot)\) \(-1\) \(1\) \(e\left(\frac{74}{105}\right)\) \(e\left(\frac{19}{70}\right)\) \(e\left(\frac{19}{210}\right)\) \(e\left(\frac{17}{30}\right)\) \(e\left(\frac{64}{105}\right)\) \(e\left(\frac{16}{35}\right)\) \(e\left(\frac{7}{30}\right)\) \(e\left(\frac{76}{105}\right)\) \(e\left(\frac{29}{70}\right)\) \(e\left(\frac{2}{7}\right)\)
\(\chi_{14700}(6541,\cdot)\) \(-1\) \(1\) \(e\left(\frac{46}{105}\right)\) \(e\left(\frac{61}{70}\right)\) \(e\left(\frac{131}{210}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{71}{105}\right)\) \(e\left(\frac{9}{35}\right)\) \(e\left(\frac{23}{30}\right)\) \(e\left(\frac{104}{105}\right)\) \(e\left(\frac{1}{70}\right)\) \(e\left(\frac{2}{7}\right)\)
\(\chi_{14700}(6961,\cdot)\) \(-1\) \(1\) \(e\left(\frac{79}{105}\right)\) \(e\left(\frac{69}{70}\right)\) \(e\left(\frac{209}{210}\right)\) \(e\left(\frac{7}{30}\right)\) \(e\left(\frac{74}{105}\right)\) \(e\left(\frac{1}{35}\right)\) \(e\left(\frac{17}{30}\right)\) \(e\left(\frac{101}{105}\right)\) \(e\left(\frac{39}{70}\right)\) \(e\left(\frac{1}{7}\right)\)
\(\chi_{14700}(7621,\cdot)\) \(-1\) \(1\) \(e\left(\frac{83}{105}\right)\) \(e\left(\frac{53}{70}\right)\) \(e\left(\frac{193}{210}\right)\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{103}{105}\right)\) \(e\left(\frac{17}{35}\right)\) \(e\left(\frac{19}{30}\right)\) \(e\left(\frac{37}{105}\right)\) \(e\left(\frac{33}{70}\right)\) \(e\left(\frac{3}{7}\right)\)
\(\chi_{14700}(8041,\cdot)\) \(-1\) \(1\) \(e\left(\frac{86}{105}\right)\) \(e\left(\frac{41}{70}\right)\) \(e\left(\frac{181}{210}\right)\) \(e\left(\frac{23}{30}\right)\) \(e\left(\frac{46}{105}\right)\) \(e\left(\frac{29}{35}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{94}{105}\right)\) \(e\left(\frac{11}{70}\right)\) \(e\left(\frac{1}{7}\right)\)
\(\chi_{14700}(8221,\cdot)\) \(-1\) \(1\) \(e\left(\frac{73}{105}\right)\) \(e\left(\frac{23}{70}\right)\) \(e\left(\frac{23}{210}\right)\) \(e\left(\frac{19}{30}\right)\) \(e\left(\frac{83}{105}\right)\) \(e\left(\frac{12}{35}\right)\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{92}{105}\right)\) \(e\left(\frac{13}{70}\right)\) \(e\left(\frac{5}{7}\right)\)
\(\chi_{14700}(8461,\cdot)\) \(-1\) \(1\) \(e\left(\frac{89}{105}\right)\) \(e\left(\frac{29}{70}\right)\) \(e\left(\frac{169}{210}\right)\) \(e\left(\frac{17}{30}\right)\) \(e\left(\frac{94}{105}\right)\) \(e\left(\frac{6}{35}\right)\) \(e\left(\frac{7}{30}\right)\) \(e\left(\frac{46}{105}\right)\) \(e\left(\frac{59}{70}\right)\) \(e\left(\frac{6}{7}\right)\)
\(\chi_{14700}(8641,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1}{105}\right)\) \(e\left(\frac{31}{70}\right)\) \(e\left(\frac{101}{210}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{86}{105}\right)\) \(e\left(\frac{4}{35}\right)\) \(e\left(\frac{23}{30}\right)\) \(e\left(\frac{89}{105}\right)\) \(e\left(\frac{51}{70}\right)\) \(e\left(\frac{4}{7}\right)\)
\(\chi_{14700}(8881,\cdot)\) \(-1\) \(1\) \(e\left(\frac{92}{105}\right)\) \(e\left(\frac{17}{70}\right)\) \(e\left(\frac{157}{210}\right)\) \(e\left(\frac{11}{30}\right)\) \(e\left(\frac{37}{105}\right)\) \(e\left(\frac{18}{35}\right)\) \(e\left(\frac{1}{30}\right)\) \(e\left(\frac{103}{105}\right)\) \(e\left(\frac{37}{70}\right)\) \(e\left(\frac{4}{7}\right)\)