Properties

Label 14700.5281
Modulus $14700$
Conductor $1225$
Order $210$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(14700, base_ring=CyclotomicField(210)) M = H._module chi = DirichletCharacter(H, M([0,0,84,95]))
 
Copy content pari:[g,chi] = znchar(Mod(5281,14700))
 

Basic properties

Modulus: \(14700\)
Conductor: \(1225\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(210\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{1225}(381,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 14700.gp

\(\chi_{14700}(61,\cdot)\) \(\chi_{14700}(241,\cdot)\) \(\chi_{14700}(481,\cdot)\) \(\chi_{14700}(661,\cdot)\) \(\chi_{14700}(1081,\cdot)\) \(\chi_{14700}(1321,\cdot)\) \(\chi_{14700}(1741,\cdot)\) \(\chi_{14700}(1921,\cdot)\) \(\chi_{14700}(2161,\cdot)\) \(\chi_{14700}(2341,\cdot)\) \(\chi_{14700}(2581,\cdot)\) \(\chi_{14700}(2761,\cdot)\) \(\chi_{14700}(3181,\cdot)\) \(\chi_{14700}(3421,\cdot)\) \(\chi_{14700}(4021,\cdot)\) \(\chi_{14700}(4261,\cdot)\) \(\chi_{14700}(4681,\cdot)\) \(\chi_{14700}(4861,\cdot)\) \(\chi_{14700}(5281,\cdot)\) \(\chi_{14700}(5521,\cdot)\) \(\chi_{14700}(5941,\cdot)\) \(\chi_{14700}(6121,\cdot)\) \(\chi_{14700}(6361,\cdot)\) \(\chi_{14700}(6541,\cdot)\) \(\chi_{14700}(6961,\cdot)\) \(\chi_{14700}(7621,\cdot)\) \(\chi_{14700}(8041,\cdot)\) \(\chi_{14700}(8221,\cdot)\) \(\chi_{14700}(8461,\cdot)\) \(\chi_{14700}(8641,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{105})$
Fixed field: Number field defined by a degree 210 polynomial (not computed)

Values on generators

\((7351,4901,1177,9901)\) → \((1,1,e\left(\frac{2}{5}\right),e\left(\frac{19}{42}\right))\)

First values

\(a\) \(-1\)\(1\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 14700 }(5281, a) \) \(-1\)\(1\)\(e\left(\frac{52}{105}\right)\)\(e\left(\frac{37}{70}\right)\)\(e\left(\frac{107}{210}\right)\)\(e\left(\frac{1}{30}\right)\)\(e\left(\frac{62}{105}\right)\)\(e\left(\frac{33}{35}\right)\)\(e\left(\frac{11}{30}\right)\)\(e\left(\frac{8}{105}\right)\)\(e\left(\frac{27}{70}\right)\)\(e\left(\frac{5}{7}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 14700 }(5281,a) \;\) at \(\;a = \) e.g. 2