Properties

Label 14700.gm
Modulus $14700$
Conductor $14700$
Order $140$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(14700, base_ring=CyclotomicField(140)) M = H._module chi = DirichletCharacter(H, M([70,70,21,30])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(83,14700)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(14700\)
Conductor: \(14700\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(140\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{140})$
Fixed field: Number field defined by a degree 140 polynomial (not computed)

First 31 of 48 characters in Galois orbit

Character \(-1\) \(1\) \(11\) \(13\) \(17\) \(19\) \(23\) \(29\) \(31\) \(37\) \(41\) \(43\)
\(\chi_{14700}(83,\cdot)\) \(1\) \(1\) \(e\left(\frac{34}{35}\right)\) \(e\left(\frac{129}{140}\right)\) \(e\left(\frac{113}{140}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{111}{140}\right)\) \(e\left(\frac{23}{35}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{29}{140}\right)\) \(e\left(\frac{11}{35}\right)\) \(e\left(\frac{1}{28}\right)\)
\(\chi_{14700}(167,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{35}\right)\) \(e\left(\frac{139}{140}\right)\) \(e\left(\frac{23}{140}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{61}{140}\right)\) \(e\left(\frac{18}{35}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{79}{140}\right)\) \(e\left(\frac{1}{35}\right)\) \(e\left(\frac{23}{28}\right)\)
\(\chi_{14700}(503,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{35}\right)\) \(e\left(\frac{81}{140}\right)\) \(e\left(\frac{97}{140}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{99}{140}\right)\) \(e\left(\frac{12}{35}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{41}{140}\right)\) \(e\left(\frac{24}{35}\right)\) \(e\left(\frac{13}{28}\right)\)
\(\chi_{14700}(923,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{35}\right)\) \(e\left(\frac{33}{140}\right)\) \(e\left(\frac{81}{140}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{87}{140}\right)\) \(e\left(\frac{1}{35}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{53}{140}\right)\) \(e\left(\frac{2}{35}\right)\) \(e\left(\frac{25}{28}\right)\)
\(\chi_{14700}(1427,\cdot)\) \(1\) \(1\) \(e\left(\frac{18}{35}\right)\) \(e\left(\frac{23}{140}\right)\) \(e\left(\frac{31}{140}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{137}{140}\right)\) \(e\left(\frac{6}{35}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{3}{140}\right)\) \(e\left(\frac{12}{35}\right)\) \(e\left(\frac{3}{28}\right)\)
\(\chi_{14700}(1847,\cdot)\) \(1\) \(1\) \(e\left(\frac{6}{35}\right)\) \(e\left(\frac{31}{140}\right)\) \(e\left(\frac{127}{140}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{69}{140}\right)\) \(e\left(\frac{2}{35}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{71}{140}\right)\) \(e\left(\frac{4}{35}\right)\) \(e\left(\frac{15}{28}\right)\)
\(\chi_{14700}(2183,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{35}\right)\) \(e\left(\frac{29}{140}\right)\) \(e\left(\frac{33}{140}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{51}{140}\right)\) \(e\left(\frac{3}{35}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{89}{140}\right)\) \(e\left(\frac{6}{35}\right)\) \(e\left(\frac{5}{28}\right)\)
\(\chi_{14700}(2267,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{35}\right)\) \(e\left(\frac{39}{140}\right)\) \(e\left(\frac{83}{140}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{1}{140}\right)\) \(e\left(\frac{33}{35}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{139}{140}\right)\) \(e\left(\frac{31}{35}\right)\) \(e\left(\frac{27}{28}\right)\)
\(\chi_{14700}(2603,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{35}\right)\) \(e\left(\frac{121}{140}\right)\) \(e\left(\frac{17}{140}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{39}{140}\right)\) \(e\left(\frac{27}{35}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{101}{140}\right)\) \(e\left(\frac{19}{35}\right)\) \(e\left(\frac{17}{28}\right)\)
\(\chi_{14700}(2687,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{35}\right)\) \(e\left(\frac{47}{140}\right)\) \(e\left(\frac{39}{140}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{73}{140}\right)\) \(e\left(\frac{29}{35}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{67}{140}\right)\) \(e\left(\frac{23}{35}\right)\) \(e\left(\frac{11}{28}\right)\)
\(\chi_{14700}(3023,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{35}\right)\) \(e\left(\frac{73}{140}\right)\) \(e\left(\frac{1}{140}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{27}{140}\right)\) \(e\left(\frac{16}{35}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{113}{140}\right)\) \(e\left(\frac{32}{35}\right)\) \(e\left(\frac{1}{28}\right)\)
\(\chi_{14700}(3863,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{35}\right)\) \(e\left(\frac{117}{140}\right)\) \(e\left(\frac{109}{140}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{3}{140}\right)\) \(e\left(\frac{29}{35}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{137}{140}\right)\) \(e\left(\frac{23}{35}\right)\) \(e\left(\frac{25}{28}\right)\)
\(\chi_{14700}(3947,\cdot)\) \(1\) \(1\) \(e\left(\frac{16}{35}\right)\) \(e\left(\frac{71}{140}\right)\) \(e\left(\frac{47}{140}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{9}{140}\right)\) \(e\left(\frac{17}{35}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{131}{140}\right)\) \(e\left(\frac{34}{35}\right)\) \(e\left(\frac{19}{28}\right)\)
\(\chi_{14700}(4283,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{35}\right)\) \(e\left(\frac{69}{140}\right)\) \(e\left(\frac{93}{140}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{131}{140}\right)\) \(e\left(\frac{18}{35}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{9}{140}\right)\) \(e\left(\frac{1}{35}\right)\) \(e\left(\frac{9}{28}\right)\)
\(\chi_{14700}(4367,\cdot)\) \(1\) \(1\) \(e\left(\frac{4}{35}\right)\) \(e\left(\frac{79}{140}\right)\) \(e\left(\frac{3}{140}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{81}{140}\right)\) \(e\left(\frac{13}{35}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{59}{140}\right)\) \(e\left(\frac{26}{35}\right)\) \(e\left(\frac{3}{28}\right)\)
\(\chi_{14700}(4787,\cdot)\) \(1\) \(1\) \(e\left(\frac{27}{35}\right)\) \(e\left(\frac{87}{140}\right)\) \(e\left(\frac{99}{140}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{13}{140}\right)\) \(e\left(\frac{9}{35}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{127}{140}\right)\) \(e\left(\frac{18}{35}\right)\) \(e\left(\frac{15}{28}\right)\)
\(\chi_{14700}(5123,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{35}\right)\) \(e\left(\frac{113}{140}\right)\) \(e\left(\frac{61}{140}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{107}{140}\right)\) \(e\left(\frac{31}{35}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{33}{140}\right)\) \(e\left(\frac{27}{35}\right)\) \(e\left(\frac{5}{28}\right)\)
\(\chi_{14700}(5627,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{35}\right)\) \(e\left(\frac{103}{140}\right)\) \(e\left(\frac{11}{140}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{17}{140}\right)\) \(e\left(\frac{1}{35}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{123}{140}\right)\) \(e\left(\frac{2}{35}\right)\) \(e\left(\frac{11}{28}\right)\)
\(\chi_{14700}(5963,\cdot)\) \(1\) \(1\) \(e\left(\frac{27}{35}\right)\) \(e\left(\frac{17}{140}\right)\) \(e\left(\frac{29}{140}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{83}{140}\right)\) \(e\left(\frac{9}{35}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{57}{140}\right)\) \(e\left(\frac{18}{35}\right)\) \(e\left(\frac{1}{28}\right)\)
\(\chi_{14700}(6047,\cdot)\) \(1\) \(1\) \(e\left(\frac{26}{35}\right)\) \(e\left(\frac{111}{140}\right)\) \(e\left(\frac{107}{140}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{89}{140}\right)\) \(e\left(\frac{32}{35}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{51}{140}\right)\) \(e\left(\frac{29}{35}\right)\) \(e\left(\frac{23}{28}\right)\)
\(\chi_{14700}(6383,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{35}\right)\) \(e\left(\frac{109}{140}\right)\) \(e\left(\frac{13}{140}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{71}{140}\right)\) \(e\left(\frac{33}{35}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{69}{140}\right)\) \(e\left(\frac{31}{35}\right)\) \(e\left(\frac{13}{28}\right)\)
\(\chi_{14700}(6803,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{35}\right)\) \(e\left(\frac{61}{140}\right)\) \(e\left(\frac{137}{140}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{59}{140}\right)\) \(e\left(\frac{22}{35}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{81}{140}\right)\) \(e\left(\frac{9}{35}\right)\) \(e\left(\frac{25}{28}\right)\)
\(\chi_{14700}(6887,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{35}\right)\) \(e\left(\frac{127}{140}\right)\) \(e\left(\frac{19}{140}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{93}{140}\right)\) \(e\left(\frac{24}{35}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{47}{140}\right)\) \(e\left(\frac{13}{35}\right)\) \(e\left(\frac{19}{28}\right)\)
\(\chi_{14700}(7223,\cdot)\) \(1\) \(1\) \(e\left(\frac{33}{35}\right)\) \(e\left(\frac{13}{140}\right)\) \(e\left(\frac{121}{140}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{47}{140}\right)\) \(e\left(\frac{11}{35}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{93}{140}\right)\) \(e\left(\frac{22}{35}\right)\) \(e\left(\frac{9}{28}\right)\)
\(\chi_{14700}(7727,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{35}\right)\) \(e\left(\frac{3}{140}\right)\) \(e\left(\frac{71}{140}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{97}{140}\right)\) \(e\left(\frac{16}{35}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{43}{140}\right)\) \(e\left(\frac{32}{35}\right)\) \(e\left(\frac{15}{28}\right)\)
\(\chi_{14700}(8063,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{35}\right)\) \(e\left(\frac{57}{140}\right)\) \(e\left(\frac{89}{140}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{23}{140}\right)\) \(e\left(\frac{24}{35}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{117}{140}\right)\) \(e\left(\frac{13}{35}\right)\) \(e\left(\frac{5}{28}\right)\)
\(\chi_{14700}(8147,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{35}\right)\) \(e\left(\frac{11}{140}\right)\) \(e\left(\frac{27}{140}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{29}{140}\right)\) \(e\left(\frac{12}{35}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{111}{140}\right)\) \(e\left(\frac{24}{35}\right)\) \(e\left(\frac{27}{28}\right)\)
\(\chi_{14700}(8483,\cdot)\) \(1\) \(1\) \(e\left(\frac{4}{35}\right)\) \(e\left(\frac{9}{140}\right)\) \(e\left(\frac{73}{140}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{11}{140}\right)\) \(e\left(\frac{13}{35}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{129}{140}\right)\) \(e\left(\frac{26}{35}\right)\) \(e\left(\frac{17}{28}\right)\)
\(\chi_{14700}(8567,\cdot)\) \(1\) \(1\) \(e\left(\frac{24}{35}\right)\) \(e\left(\frac{19}{140}\right)\) \(e\left(\frac{123}{140}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{101}{140}\right)\) \(e\left(\frac{8}{35}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{39}{140}\right)\) \(e\left(\frac{16}{35}\right)\) \(e\left(\frac{11}{28}\right)\)
\(\chi_{14700}(8903,\cdot)\) \(1\) \(1\) \(e\left(\frac{6}{35}\right)\) \(e\left(\frac{101}{140}\right)\) \(e\left(\frac{57}{140}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{139}{140}\right)\) \(e\left(\frac{2}{35}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{1}{140}\right)\) \(e\left(\frac{4}{35}\right)\) \(e\left(\frac{1}{28}\right)\)
\(\chi_{14700}(8987,\cdot)\) \(1\) \(1\) \(e\left(\frac{12}{35}\right)\) \(e\left(\frac{27}{140}\right)\) \(e\left(\frac{79}{140}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{33}{140}\right)\) \(e\left(\frac{4}{35}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{107}{140}\right)\) \(e\left(\frac{8}{35}\right)\) \(e\left(\frac{23}{28}\right)\)