Properties

Label 14700.83
Modulus $14700$
Conductor $14700$
Order $140$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(14700, base_ring=CyclotomicField(140)) M = H._module chi = DirichletCharacter(H, M([70,70,21,30]))
 
Copy content pari:[g,chi] = znchar(Mod(83,14700))
 

Basic properties

Modulus: \(14700\)
Conductor: \(14700\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(140\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 14700.gm

\(\chi_{14700}(83,\cdot)\) \(\chi_{14700}(167,\cdot)\) \(\chi_{14700}(503,\cdot)\) \(\chi_{14700}(923,\cdot)\) \(\chi_{14700}(1427,\cdot)\) \(\chi_{14700}(1847,\cdot)\) \(\chi_{14700}(2183,\cdot)\) \(\chi_{14700}(2267,\cdot)\) \(\chi_{14700}(2603,\cdot)\) \(\chi_{14700}(2687,\cdot)\) \(\chi_{14700}(3023,\cdot)\) \(\chi_{14700}(3863,\cdot)\) \(\chi_{14700}(3947,\cdot)\) \(\chi_{14700}(4283,\cdot)\) \(\chi_{14700}(4367,\cdot)\) \(\chi_{14700}(4787,\cdot)\) \(\chi_{14700}(5123,\cdot)\) \(\chi_{14700}(5627,\cdot)\) \(\chi_{14700}(5963,\cdot)\) \(\chi_{14700}(6047,\cdot)\) \(\chi_{14700}(6383,\cdot)\) \(\chi_{14700}(6803,\cdot)\) \(\chi_{14700}(6887,\cdot)\) \(\chi_{14700}(7223,\cdot)\) \(\chi_{14700}(7727,\cdot)\) \(\chi_{14700}(8063,\cdot)\) \(\chi_{14700}(8147,\cdot)\) \(\chi_{14700}(8483,\cdot)\) \(\chi_{14700}(8567,\cdot)\) \(\chi_{14700}(8903,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{140})$
Fixed field: Number field defined by a degree 140 polynomial (not computed)

Values on generators

\((7351,4901,1177,9901)\) → \((-1,-1,e\left(\frac{3}{20}\right),e\left(\frac{3}{14}\right))\)

First values

\(a\) \(-1\)\(1\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 14700 }(83, a) \) \(1\)\(1\)\(e\left(\frac{34}{35}\right)\)\(e\left(\frac{129}{140}\right)\)\(e\left(\frac{113}{140}\right)\)\(e\left(\frac{7}{10}\right)\)\(e\left(\frac{111}{140}\right)\)\(e\left(\frac{23}{35}\right)\)\(e\left(\frac{1}{5}\right)\)\(e\left(\frac{29}{140}\right)\)\(e\left(\frac{11}{35}\right)\)\(e\left(\frac{1}{28}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 14700 }(83,a) \;\) at \(\;a = \) e.g. 2