sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(14700, base_ring=CyclotomicField(140))
M = H._module
chi = DirichletCharacter(H, M([70,70,21,30]))
pari:[g,chi] = znchar(Mod(83,14700))
Modulus: | \(14700\) | |
Conductor: | \(14700\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(140\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{14700}(83,\cdot)\)
\(\chi_{14700}(167,\cdot)\)
\(\chi_{14700}(503,\cdot)\)
\(\chi_{14700}(923,\cdot)\)
\(\chi_{14700}(1427,\cdot)\)
\(\chi_{14700}(1847,\cdot)\)
\(\chi_{14700}(2183,\cdot)\)
\(\chi_{14700}(2267,\cdot)\)
\(\chi_{14700}(2603,\cdot)\)
\(\chi_{14700}(2687,\cdot)\)
\(\chi_{14700}(3023,\cdot)\)
\(\chi_{14700}(3863,\cdot)\)
\(\chi_{14700}(3947,\cdot)\)
\(\chi_{14700}(4283,\cdot)\)
\(\chi_{14700}(4367,\cdot)\)
\(\chi_{14700}(4787,\cdot)\)
\(\chi_{14700}(5123,\cdot)\)
\(\chi_{14700}(5627,\cdot)\)
\(\chi_{14700}(5963,\cdot)\)
\(\chi_{14700}(6047,\cdot)\)
\(\chi_{14700}(6383,\cdot)\)
\(\chi_{14700}(6803,\cdot)\)
\(\chi_{14700}(6887,\cdot)\)
\(\chi_{14700}(7223,\cdot)\)
\(\chi_{14700}(7727,\cdot)\)
\(\chi_{14700}(8063,\cdot)\)
\(\chi_{14700}(8147,\cdot)\)
\(\chi_{14700}(8483,\cdot)\)
\(\chi_{14700}(8567,\cdot)\)
\(\chi_{14700}(8903,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((7351,4901,1177,9901)\) → \((-1,-1,e\left(\frac{3}{20}\right),e\left(\frac{3}{14}\right))\)
\(a\) |
\(-1\) | \(1\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) | \(43\) |
\( \chi_{ 14700 }(83, a) \) |
\(1\) | \(1\) | \(e\left(\frac{34}{35}\right)\) | \(e\left(\frac{129}{140}\right)\) | \(e\left(\frac{113}{140}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{111}{140}\right)\) | \(e\left(\frac{23}{35}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{29}{140}\right)\) | \(e\left(\frac{11}{35}\right)\) | \(e\left(\frac{1}{28}\right)\) |
sage:chi.jacobi_sum(n)