Properties

Label 1452.z
Modulus $1452$
Conductor $363$
Order $110$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1452, base_ring=CyclotomicField(110)) M = H._module chi = DirichletCharacter(H, M([0,55,49])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(17,1452)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(1452\)
Conductor: \(363\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(110\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 363.p
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{55})$
Fixed field: Number field defined by a degree 110 polynomial (not computed)

First 31 of 40 characters in Galois orbit

Character \(-1\) \(1\) \(5\) \(7\) \(13\) \(17\) \(19\) \(23\) \(25\) \(29\) \(31\) \(35\)
\(\chi_{1452}(17,\cdot)\) \(1\) \(1\) \(e\left(\frac{51}{110}\right)\) \(e\left(\frac{13}{110}\right)\) \(e\left(\frac{109}{110}\right)\) \(e\left(\frac{18}{55}\right)\) \(e\left(\frac{107}{110}\right)\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{51}{55}\right)\) \(e\left(\frac{4}{55}\right)\) \(e\left(\frac{17}{55}\right)\) \(e\left(\frac{32}{55}\right)\)
\(\chi_{1452}(29,\cdot)\) \(1\) \(1\) \(e\left(\frac{103}{110}\right)\) \(e\left(\frac{9}{110}\right)\) \(e\left(\frac{67}{110}\right)\) \(e\left(\frac{4}{55}\right)\) \(e\left(\frac{91}{110}\right)\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{48}{55}\right)\) \(e\left(\frac{7}{55}\right)\) \(e\left(\frac{16}{55}\right)\) \(e\left(\frac{1}{55}\right)\)
\(\chi_{1452}(41,\cdot)\) \(1\) \(1\) \(e\left(\frac{107}{110}\right)\) \(e\left(\frac{51}{110}\right)\) \(e\left(\frac{13}{110}\right)\) \(e\left(\frac{41}{55}\right)\) \(e\left(\frac{39}{110}\right)\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{52}{55}\right)\) \(e\left(\frac{3}{55}\right)\) \(e\left(\frac{54}{55}\right)\) \(e\left(\frac{24}{55}\right)\)
\(\chi_{1452}(101,\cdot)\) \(1\) \(1\) \(e\left(\frac{69}{110}\right)\) \(e\left(\frac{37}{110}\right)\) \(e\left(\frac{31}{110}\right)\) \(e\left(\frac{47}{55}\right)\) \(e\left(\frac{93}{110}\right)\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{14}{55}\right)\) \(e\left(\frac{41}{55}\right)\) \(e\left(\frac{23}{55}\right)\) \(e\left(\frac{53}{55}\right)\)
\(\chi_{1452}(149,\cdot)\) \(1\) \(1\) \(e\left(\frac{61}{110}\right)\) \(e\left(\frac{63}{110}\right)\) \(e\left(\frac{29}{110}\right)\) \(e\left(\frac{28}{55}\right)\) \(e\left(\frac{87}{110}\right)\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{6}{55}\right)\) \(e\left(\frac{49}{55}\right)\) \(e\left(\frac{2}{55}\right)\) \(e\left(\frac{7}{55}\right)\)
\(\chi_{1452}(173,\cdot)\) \(1\) \(1\) \(e\left(\frac{87}{110}\right)\) \(e\left(\frac{61}{110}\right)\) \(e\left(\frac{63}{110}\right)\) \(e\left(\frac{21}{55}\right)\) \(e\left(\frac{79}{110}\right)\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{32}{55}\right)\) \(e\left(\frac{23}{55}\right)\) \(e\left(\frac{29}{55}\right)\) \(e\left(\frac{19}{55}\right)\)
\(\chi_{1452}(281,\cdot)\) \(1\) \(1\) \(e\left(\frac{71}{110}\right)\) \(e\left(\frac{3}{110}\right)\) \(e\left(\frac{59}{110}\right)\) \(e\left(\frac{38}{55}\right)\) \(e\left(\frac{67}{110}\right)\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{16}{55}\right)\) \(e\left(\frac{39}{55}\right)\) \(e\left(\frac{42}{55}\right)\) \(e\left(\frac{37}{55}\right)\)
\(\chi_{1452}(293,\cdot)\) \(1\) \(1\) \(e\left(\frac{73}{110}\right)\) \(e\left(\frac{79}{110}\right)\) \(e\left(\frac{87}{110}\right)\) \(e\left(\frac{29}{55}\right)\) \(e\left(\frac{41}{110}\right)\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{18}{55}\right)\) \(e\left(\frac{37}{55}\right)\) \(e\left(\frac{6}{55}\right)\) \(e\left(\frac{21}{55}\right)\)
\(\chi_{1452}(305,\cdot)\) \(1\) \(1\) \(e\left(\frac{67}{110}\right)\) \(e\left(\frac{71}{110}\right)\) \(e\left(\frac{3}{110}\right)\) \(e\left(\frac{1}{55}\right)\) \(e\left(\frac{9}{110}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{12}{55}\right)\) \(e\left(\frac{43}{55}\right)\) \(e\left(\frac{4}{55}\right)\) \(e\left(\frac{14}{55}\right)\)
\(\chi_{1452}(365,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{110}\right)\) \(e\left(\frac{7}{110}\right)\) \(e\left(\frac{101}{110}\right)\) \(e\left(\frac{52}{55}\right)\) \(e\left(\frac{83}{110}\right)\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{19}{55}\right)\) \(e\left(\frac{36}{55}\right)\) \(e\left(\frac{43}{55}\right)\) \(e\left(\frac{13}{55}\right)\)
\(\chi_{1452}(413,\cdot)\) \(1\) \(1\) \(e\left(\frac{81}{110}\right)\) \(e\left(\frac{53}{110}\right)\) \(e\left(\frac{89}{110}\right)\) \(e\left(\frac{48}{55}\right)\) \(e\left(\frac{47}{110}\right)\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{26}{55}\right)\) \(e\left(\frac{29}{55}\right)\) \(e\left(\frac{27}{55}\right)\) \(e\left(\frac{12}{55}\right)\)
\(\chi_{1452}(425,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{110}\right)\) \(e\left(\frac{59}{110}\right)\) \(e\left(\frac{97}{110}\right)\) \(e\left(\frac{14}{55}\right)\) \(e\left(\frac{71}{110}\right)\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{3}{55}\right)\) \(e\left(\frac{52}{55}\right)\) \(e\left(\frac{1}{55}\right)\) \(e\left(\frac{31}{55}\right)\)
\(\chi_{1452}(437,\cdot)\) \(1\) \(1\) \(e\left(\frac{47}{110}\right)\) \(e\left(\frac{81}{110}\right)\) \(e\left(\frac{53}{110}\right)\) \(e\left(\frac{36}{55}\right)\) \(e\left(\frac{49}{110}\right)\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{47}{55}\right)\) \(e\left(\frac{8}{55}\right)\) \(e\left(\frac{34}{55}\right)\) \(e\left(\frac{9}{55}\right)\)
\(\chi_{1452}(497,\cdot)\) \(1\) \(1\) \(e\left(\frac{49}{110}\right)\) \(e\left(\frac{47}{110}\right)\) \(e\left(\frac{81}{110}\right)\) \(e\left(\frac{27}{55}\right)\) \(e\left(\frac{23}{110}\right)\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{49}{55}\right)\) \(e\left(\frac{6}{55}\right)\) \(e\left(\frac{53}{55}\right)\) \(e\left(\frac{48}{55}\right)\)
\(\chi_{1452}(545,\cdot)\) \(1\) \(1\) \(e\left(\frac{91}{110}\right)\) \(e\left(\frac{103}{110}\right)\) \(e\left(\frac{9}{110}\right)\) \(e\left(\frac{3}{55}\right)\) \(e\left(\frac{27}{110}\right)\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{36}{55}\right)\) \(e\left(\frac{19}{55}\right)\) \(e\left(\frac{12}{55}\right)\) \(e\left(\frac{42}{55}\right)\)
\(\chi_{1452}(557,\cdot)\) \(1\) \(1\) \(e\left(\frac{43}{110}\right)\) \(e\left(\frac{39}{110}\right)\) \(e\left(\frac{107}{110}\right)\) \(e\left(\frac{54}{55}\right)\) \(e\left(\frac{101}{110}\right)\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{43}{55}\right)\) \(e\left(\frac{12}{55}\right)\) \(e\left(\frac{51}{55}\right)\) \(e\left(\frac{41}{55}\right)\)
\(\chi_{1452}(569,\cdot)\) \(1\) \(1\) \(e\left(\frac{27}{110}\right)\) \(e\left(\frac{91}{110}\right)\) \(e\left(\frac{103}{110}\right)\) \(e\left(\frac{16}{55}\right)\) \(e\left(\frac{89}{110}\right)\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{27}{55}\right)\) \(e\left(\frac{28}{55}\right)\) \(e\left(\frac{9}{55}\right)\) \(e\left(\frac{4}{55}\right)\)
\(\chi_{1452}(629,\cdot)\) \(1\) \(1\) \(e\left(\frac{79}{110}\right)\) \(e\left(\frac{87}{110}\right)\) \(e\left(\frac{61}{110}\right)\) \(e\left(\frac{2}{55}\right)\) \(e\left(\frac{73}{110}\right)\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{24}{55}\right)\) \(e\left(\frac{31}{55}\right)\) \(e\left(\frac{8}{55}\right)\) \(e\left(\frac{28}{55}\right)\)
\(\chi_{1452}(677,\cdot)\) \(1\) \(1\) \(e\left(\frac{101}{110}\right)\) \(e\left(\frac{43}{110}\right)\) \(e\left(\frac{39}{110}\right)\) \(e\left(\frac{13}{55}\right)\) \(e\left(\frac{7}{110}\right)\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{46}{55}\right)\) \(e\left(\frac{9}{55}\right)\) \(e\left(\frac{52}{55}\right)\) \(e\left(\frac{17}{55}\right)\)
\(\chi_{1452}(689,\cdot)\) \(1\) \(1\) \(e\left(\frac{83}{110}\right)\) \(e\left(\frac{19}{110}\right)\) \(e\left(\frac{7}{110}\right)\) \(e\left(\frac{39}{55}\right)\) \(e\left(\frac{21}{110}\right)\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{28}{55}\right)\) \(e\left(\frac{27}{55}\right)\) \(e\left(\frac{46}{55}\right)\) \(e\left(\frac{51}{55}\right)\)
\(\chi_{1452}(701,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{110}\right)\) \(e\left(\frac{101}{110}\right)\) \(e\left(\frac{43}{110}\right)\) \(e\left(\frac{51}{55}\right)\) \(e\left(\frac{19}{110}\right)\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{7}{55}\right)\) \(e\left(\frac{48}{55}\right)\) \(e\left(\frac{39}{55}\right)\) \(e\left(\frac{54}{55}\right)\)
\(\chi_{1452}(761,\cdot)\) \(1\) \(1\) \(e\left(\frac{109}{110}\right)\) \(e\left(\frac{17}{110}\right)\) \(e\left(\frac{41}{110}\right)\) \(e\left(\frac{32}{55}\right)\) \(e\left(\frac{13}{110}\right)\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{54}{55}\right)\) \(e\left(\frac{1}{55}\right)\) \(e\left(\frac{18}{55}\right)\) \(e\left(\frac{8}{55}\right)\)
\(\chi_{1452}(809,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{110}\right)\) \(e\left(\frac{93}{110}\right)\) \(e\left(\frac{69}{110}\right)\) \(e\left(\frac{23}{55}\right)\) \(e\left(\frac{97}{110}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{1}{55}\right)\) \(e\left(\frac{54}{55}\right)\) \(e\left(\frac{37}{55}\right)\) \(e\left(\frac{47}{55}\right)\)
\(\chi_{1452}(821,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{110}\right)\) \(e\left(\frac{109}{110}\right)\) \(e\left(\frac{17}{110}\right)\) \(e\left(\frac{24}{55}\right)\) \(e\left(\frac{51}{110}\right)\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{13}{55}\right)\) \(e\left(\frac{42}{55}\right)\) \(e\left(\frac{41}{55}\right)\) \(e\left(\frac{6}{55}\right)\)
\(\chi_{1452}(833,\cdot)\) \(1\) \(1\) \(e\left(\frac{97}{110}\right)\) \(e\left(\frac{1}{110}\right)\) \(e\left(\frac{93}{110}\right)\) \(e\left(\frac{31}{55}\right)\) \(e\left(\frac{59}{110}\right)\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{42}{55}\right)\) \(e\left(\frac{13}{55}\right)\) \(e\left(\frac{14}{55}\right)\) \(e\left(\frac{49}{55}\right)\)
\(\chi_{1452}(893,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{110}\right)\) \(e\left(\frac{57}{110}\right)\) \(e\left(\frac{21}{110}\right)\) \(e\left(\frac{7}{55}\right)\) \(e\left(\frac{63}{110}\right)\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{29}{55}\right)\) \(e\left(\frac{26}{55}\right)\) \(e\left(\frac{28}{55}\right)\) \(e\left(\frac{43}{55}\right)\)
\(\chi_{1452}(953,\cdot)\) \(1\) \(1\) \(e\left(\frac{53}{110}\right)\) \(e\left(\frac{89}{110}\right)\) \(e\left(\frac{27}{110}\right)\) \(e\left(\frac{9}{55}\right)\) \(e\left(\frac{81}{110}\right)\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{53}{55}\right)\) \(e\left(\frac{2}{55}\right)\) \(e\left(\frac{36}{55}\right)\) \(e\left(\frac{16}{55}\right)\)
\(\chi_{1452}(1025,\cdot)\) \(1\) \(1\) \(e\left(\frac{59}{110}\right)\) \(e\left(\frac{97}{110}\right)\) \(e\left(\frac{1}{110}\right)\) \(e\left(\frac{37}{55}\right)\) \(e\left(\frac{3}{110}\right)\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{4}{55}\right)\) \(e\left(\frac{51}{55}\right)\) \(e\left(\frac{38}{55}\right)\) \(e\left(\frac{23}{55}\right)\)
\(\chi_{1452}(1073,\cdot)\) \(1\) \(1\) \(e\left(\frac{21}{110}\right)\) \(e\left(\frac{83}{110}\right)\) \(e\left(\frac{19}{110}\right)\) \(e\left(\frac{43}{55}\right)\) \(e\left(\frac{57}{110}\right)\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{21}{55}\right)\) \(e\left(\frac{34}{55}\right)\) \(e\left(\frac{7}{55}\right)\) \(e\left(\frac{52}{55}\right)\)
\(\chi_{1452}(1085,\cdot)\) \(1\) \(1\) \(e\left(\frac{93}{110}\right)\) \(e\left(\frac{69}{110}\right)\) \(e\left(\frac{37}{110}\right)\) \(e\left(\frac{49}{55}\right)\) \(e\left(\frac{1}{110}\right)\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{38}{55}\right)\) \(e\left(\frac{17}{55}\right)\) \(e\left(\frac{31}{55}\right)\) \(e\left(\frac{26}{55}\right)\)
\(\chi_{1452}(1097,\cdot)\) \(1\) \(1\) \(e\left(\frac{57}{110}\right)\) \(e\left(\frac{21}{110}\right)\) \(e\left(\frac{83}{110}\right)\) \(e\left(\frac{46}{55}\right)\) \(e\left(\frac{29}{110}\right)\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{2}{55}\right)\) \(e\left(\frac{53}{55}\right)\) \(e\left(\frac{19}{55}\right)\) \(e\left(\frac{39}{55}\right)\)