Properties

Label 1452.557
Modulus $1452$
Conductor $363$
Order $110$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1452, base_ring=CyclotomicField(110)) M = H._module chi = DirichletCharacter(H, M([0,55,37]))
 
Copy content pari:[g,chi] = znchar(Mod(557,1452))
 

Basic properties

Modulus: \(1452\)
Conductor: \(363\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(110\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{363}(194,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 1452.z

\(\chi_{1452}(17,\cdot)\) \(\chi_{1452}(29,\cdot)\) \(\chi_{1452}(41,\cdot)\) \(\chi_{1452}(101,\cdot)\) \(\chi_{1452}(149,\cdot)\) \(\chi_{1452}(173,\cdot)\) \(\chi_{1452}(281,\cdot)\) \(\chi_{1452}(293,\cdot)\) \(\chi_{1452}(305,\cdot)\) \(\chi_{1452}(365,\cdot)\) \(\chi_{1452}(413,\cdot)\) \(\chi_{1452}(425,\cdot)\) \(\chi_{1452}(437,\cdot)\) \(\chi_{1452}(497,\cdot)\) \(\chi_{1452}(545,\cdot)\) \(\chi_{1452}(557,\cdot)\) \(\chi_{1452}(569,\cdot)\) \(\chi_{1452}(629,\cdot)\) \(\chi_{1452}(677,\cdot)\) \(\chi_{1452}(689,\cdot)\) \(\chi_{1452}(701,\cdot)\) \(\chi_{1452}(761,\cdot)\) \(\chi_{1452}(809,\cdot)\) \(\chi_{1452}(821,\cdot)\) \(\chi_{1452}(833,\cdot)\) \(\chi_{1452}(893,\cdot)\) \(\chi_{1452}(953,\cdot)\) \(\chi_{1452}(1025,\cdot)\) \(\chi_{1452}(1073,\cdot)\) \(\chi_{1452}(1085,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{55})$
Fixed field: Number field defined by a degree 110 polynomial (not computed)

Values on generators

\((727,485,1333)\) → \((1,-1,e\left(\frac{37}{110}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(13\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(35\)
\( \chi_{ 1452 }(557, a) \) \(1\)\(1\)\(e\left(\frac{43}{110}\right)\)\(e\left(\frac{39}{110}\right)\)\(e\left(\frac{107}{110}\right)\)\(e\left(\frac{54}{55}\right)\)\(e\left(\frac{101}{110}\right)\)\(e\left(\frac{1}{22}\right)\)\(e\left(\frac{43}{55}\right)\)\(e\left(\frac{12}{55}\right)\)\(e\left(\frac{51}{55}\right)\)\(e\left(\frac{41}{55}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 1452 }(557,a) \;\) at \(\;a = \) e.g. 2