Properties

Label 1452.w
Modulus $1452$
Conductor $1452$
Order $22$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1452, base_ring=CyclotomicField(22)) M = H._module chi = DirichletCharacter(H, M([11,11,14])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(23,1452)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(1452\)
Conductor: \(1452\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(22\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{11})\)
Fixed field: Number field defined by a degree 22 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(5\) \(7\) \(13\) \(17\) \(19\) \(23\) \(25\) \(29\) \(31\) \(35\)
\(\chi_{1452}(23,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{6}{11}\right)\)
\(\chi_{1452}(155,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{9}{11}\right)\)
\(\chi_{1452}(287,\cdot)\) \(1\) \(1\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{4}{11}\right)\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{1}{11}\right)\)
\(\chi_{1452}(419,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{4}{11}\right)\) \(e\left(\frac{5}{11}\right)\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{4}{11}\right)\)
\(\chi_{1452}(551,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{7}{11}\right)\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{7}{11}\right)\)
\(\chi_{1452}(683,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{5}{11}\right)\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{7}{11}\right)\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{10}{11}\right)\)
\(\chi_{1452}(815,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{2}{11}\right)\)
\(\chi_{1452}(947,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{5}{11}\right)\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{5}{11}\right)\)
\(\chi_{1452}(1079,\cdot)\) \(1\) \(1\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{4}{11}\right)\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{8}{11}\right)\)
\(\chi_{1452}(1343,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{7}{11}\right)\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{3}{11}\right)\)