Properties

Label 1452.155
Modulus $1452$
Conductor $1452$
Order $22$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1452, base_ring=CyclotomicField(22)) M = H._module chi = DirichletCharacter(H, M([11,11,10]))
 
Copy content pari:[g,chi] = znchar(Mod(155,1452))
 

Basic properties

Modulus: \(1452\)
Conductor: \(1452\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(22\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 1452.w

\(\chi_{1452}(23,\cdot)\) \(\chi_{1452}(155,\cdot)\) \(\chi_{1452}(287,\cdot)\) \(\chi_{1452}(419,\cdot)\) \(\chi_{1452}(551,\cdot)\) \(\chi_{1452}(683,\cdot)\) \(\chi_{1452}(815,\cdot)\) \(\chi_{1452}(947,\cdot)\) \(\chi_{1452}(1079,\cdot)\) \(\chi_{1452}(1343,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{11})\)
Fixed field: Number field defined by a degree 22 polynomial

Values on generators

\((727,485,1333)\) → \((-1,-1,e\left(\frac{5}{11}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(13\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(35\)
\( \chi_{ 1452 }(155, a) \) \(1\)\(1\)\(e\left(\frac{3}{22}\right)\)\(e\left(\frac{15}{22}\right)\)\(e\left(\frac{10}{11}\right)\)\(e\left(\frac{17}{22}\right)\)\(e\left(\frac{5}{22}\right)\)\(e\left(\frac{9}{11}\right)\)\(e\left(\frac{3}{11}\right)\)\(e\left(\frac{5}{22}\right)\)\(e\left(\frac{13}{22}\right)\)\(e\left(\frac{9}{11}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 1452 }(155,a) \;\) at \(\;a = \) e.g. 2