sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1452, base_ring=CyclotomicField(22))
M = H._module
chi = DirichletCharacter(H, M([11,11,10]))
pari:[g,chi] = znchar(Mod(155,1452))
Modulus: | \(1452\) | |
Conductor: | \(1452\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(22\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{1452}(23,\cdot)\)
\(\chi_{1452}(155,\cdot)\)
\(\chi_{1452}(287,\cdot)\)
\(\chi_{1452}(419,\cdot)\)
\(\chi_{1452}(551,\cdot)\)
\(\chi_{1452}(683,\cdot)\)
\(\chi_{1452}(815,\cdot)\)
\(\chi_{1452}(947,\cdot)\)
\(\chi_{1452}(1079,\cdot)\)
\(\chi_{1452}(1343,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((727,485,1333)\) → \((-1,-1,e\left(\frac{5}{11}\right))\)
\(a\) |
\(-1\) | \(1\) | \(5\) | \(7\) | \(13\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(35\) |
\( \chi_{ 1452 }(155, a) \) |
\(1\) | \(1\) | \(e\left(\frac{3}{22}\right)\) | \(e\left(\frac{15}{22}\right)\) | \(e\left(\frac{10}{11}\right)\) | \(e\left(\frac{17}{22}\right)\) | \(e\left(\frac{5}{22}\right)\) | \(e\left(\frac{9}{11}\right)\) | \(e\left(\frac{3}{11}\right)\) | \(e\left(\frac{5}{22}\right)\) | \(e\left(\frac{13}{22}\right)\) | \(e\left(\frac{9}{11}\right)\) |
sage:chi.jacobi_sum(n)