Properties

Label 143.27
Modulus $143$
Conductor $11$
Order $5$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Learn more about

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(143, base_ring=CyclotomicField(10))
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([4,0]))
 
pari: [g,chi] = znchar(Mod(27,143))
 

Basic properties

Modulus: \(143\)
Conductor: \(11\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(5\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{11}(5,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 143.h

\(\chi_{143}(14,\cdot)\) \(\chi_{143}(27,\cdot)\) \(\chi_{143}(53,\cdot)\) \(\chi_{143}(92,\cdot)\)

sage: chi.galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{5})\)
Fixed field: \(\Q(\zeta_{11})^+\)

Values on generators

\((79,67)\) → \((e\left(\frac{2}{5}\right),1)\)

Values

\(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(7\)\(8\)\(9\)\(10\)\(12\)
\(1\)\(1\)\(e\left(\frac{2}{5}\right)\)\(e\left(\frac{1}{5}\right)\)\(e\left(\frac{4}{5}\right)\)\(e\left(\frac{3}{5}\right)\)\(e\left(\frac{3}{5}\right)\)\(e\left(\frac{4}{5}\right)\)\(e\left(\frac{1}{5}\right)\)\(e\left(\frac{2}{5}\right)\)\(1\)\(1\)
value at e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 143 }(27,·) )\;\) at \(\;a = \) e.g. 2
\(\displaystyle \tau_{2}(\chi_{143}(27,\cdot)) = \sum_{r\in \Z/143\Z} \chi_{143}(27,r) e\left(\frac{2r}{143}\right) = -2.0701620998+-2.5912215035i \)

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 143 }(27,·),\chi_{ 143 }(n,·)) \;\) for \( \; n = \) e.g. 1
\( \displaystyle J(\chi_{143}(27,\cdot),\chi_{143}(1,\cdot)) = \sum_{r\in \Z/143\Z} \chi_{143}(27,r) \chi_{143}(1,1-r) = -11 \)

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 143 }(27,·)) \;\) at \(\; a,b = \) e.g. 1,2
\( \displaystyle K(1,2,\chi_{143}(27,·)) = \sum_{r \in \Z/143\Z} \chi_{143}(27,r) e\left(\frac{1 r + 2 r^{-1}}{143}\right) = -1.1556788634+-3.5568138121i \)