# Properties

 Label 143.92 Modulus $143$ Conductor $11$ Order $5$ Real no Primitive no Minimal yes Parity even

# Related objects

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter

sage: H = DirichletGroup(143, base_ring=CyclotomicField(10))

sage: M = H._module

sage: chi = DirichletCharacter(H, M([2,0]))

pari: [g,chi] = znchar(Mod(92,143))

## Basic properties

 Modulus: $$143$$ Conductor: $$11$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$5$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: no Primitive: no, induced from $$\chi_{11}(4,\cdot)$$ sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: yes Parity: even sage: chi.is_odd()  pari: zncharisodd(g,chi)

## Galois orbit 143.h

sage: chi.galois_orbit()

pari: order = charorder(g,chi)

pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Related number fields

 Field of values: $$\Q(\zeta_{5})$$ Fixed field: $$\Q(\zeta_{11})^+$$

## Values on generators

$$(79,67)$$ → $$(e\left(\frac{1}{5}\right),1)$$

## Values

 $$-1$$ $$1$$ $$2$$ $$3$$ $$4$$ $$5$$ $$6$$ $$7$$ $$8$$ $$9$$ $$10$$ $$12$$ $$1$$ $$1$$ $$e\left(\frac{1}{5}\right)$$ $$e\left(\frac{3}{5}\right)$$ $$e\left(\frac{2}{5}\right)$$ $$e\left(\frac{4}{5}\right)$$ $$e\left(\frac{4}{5}\right)$$ $$e\left(\frac{2}{5}\right)$$ $$e\left(\frac{3}{5}\right)$$ $$e\left(\frac{1}{5}\right)$$ $$1$$ $$1$$
 value at e.g. 2

## Gauss sum

sage: chi.gauss_sum(a)

pari: znchargauss(g,chi,a)

$$\tau_{ a }( \chi_{ 143 }(92,·) )\;$$ at $$\;a =$$ e.g. 2
$$\displaystyle \tau_{2}(\chi_{143}(92,\cdot)) = \sum_{r\in \Z/143\Z} \chi_{143}(92,r) e\left(\frac{2r}{143}\right) = -2.6361055643+-2.0126965628i$$

## Jacobi sum

sage: chi.jacobi_sum(n)

$$J(\chi_{ 143 }(92,·),\chi_{ 143 }(n,·)) \;$$ for $$\; n =$$ e.g. 1
$$\displaystyle J(\chi_{143}(92,\cdot),\chi_{143}(1,\cdot)) = \sum_{r\in \Z/143\Z} \chi_{143}(92,r) \chi_{143}(1,1-r) = -11$$

## Kloosterman sum

sage: chi.kloosterman_sum(a,b)

$$K(a,b,\chi_{ 143 }(92,·)) \;$$ at $$\; a,b =$$ e.g. 1,2
$$\displaystyle K(1,2,\chi_{143}(92,·)) = \sum_{r \in \Z/143\Z} \chi_{143}(92,r) e\left(\frac{1 r + 2 r^{-1}}{143}\right) = 2.0660151535+1.5010478725i$$