Properties

Label 14157.530
Modulus $14157$
Conductor $4719$
Order $330$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(14157, base_ring=CyclotomicField(330)) M = H._module chi = DirichletCharacter(H, M([165,213,275]))
 
Copy content pari:[g,chi] = znchar(Mod(530,14157))
 

Basic properties

Modulus: \(14157\)
Conductor: \(4719\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(330\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{4719}(530,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 14157.il

\(\chi_{14157}(17,\cdot)\) \(\chi_{14157}(62,\cdot)\) \(\chi_{14157}(134,\cdot)\) \(\chi_{14157}(413,\cdot)\) \(\chi_{14157}(530,\cdot)\) \(\chi_{14157}(953,\cdot)\) \(\chi_{14157}(998,\cdot)\) \(\chi_{14157}(1349,\cdot)\) \(\chi_{14157}(1421,\cdot)\) \(\chi_{14157}(1700,\cdot)\) \(\chi_{14157}(1817,\cdot)\) \(\chi_{14157}(1889,\cdot)\) \(\chi_{14157}(2240,\cdot)\) \(\chi_{14157}(2285,\cdot)\) \(\chi_{14157}(2591,\cdot)\) \(\chi_{14157}(2636,\cdot)\) \(\chi_{14157}(2708,\cdot)\) \(\chi_{14157}(2987,\cdot)\) \(\chi_{14157}(3104,\cdot)\) \(\chi_{14157}(3176,\cdot)\) \(\chi_{14157}(3527,\cdot)\) \(\chi_{14157}(3572,\cdot)\) \(\chi_{14157}(3878,\cdot)\) \(\chi_{14157}(3923,\cdot)\) \(\chi_{14157}(3995,\cdot)\) \(\chi_{14157}(4274,\cdot)\) \(\chi_{14157}(4391,\cdot)\) \(\chi_{14157}(4463,\cdot)\) \(\chi_{14157}(4814,\cdot)\) \(\chi_{14157}(4859,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{165})$
Fixed field: Number field defined by a degree 330 polynomial (not computed)

Values on generators

\((6293,3511,4357)\) → \((-1,e\left(\frac{71}{110}\right),e\left(\frac{5}{6}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(7\)\(8\)\(10\)\(14\)\(16\)\(17\)\(19\)
\( \chi_{ 14157 }(530, a) \) \(1\)\(1\)\(e\left(\frac{323}{330}\right)\)\(e\left(\frac{158}{165}\right)\)\(e\left(\frac{42}{55}\right)\)\(e\left(\frac{113}{165}\right)\)\(e\left(\frac{103}{110}\right)\)\(e\left(\frac{49}{66}\right)\)\(e\left(\frac{73}{110}\right)\)\(e\left(\frac{151}{165}\right)\)\(e\left(\frac{131}{165}\right)\)\(e\left(\frac{122}{165}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 14157 }(530,a) \;\) at \(\;a = \) e.g. 2