sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4719, base_ring=CyclotomicField(330))
M = H._module
chi = DirichletCharacter(H, M([165,213,275]))
pari:[g,chi] = znchar(Mod(530,4719))
| Modulus: | \(4719\) | |
| Conductor: | \(4719\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(330\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{4719}(17,\cdot)\)
\(\chi_{4719}(62,\cdot)\)
\(\chi_{4719}(95,\cdot)\)
\(\chi_{4719}(101,\cdot)\)
\(\chi_{4719}(134,\cdot)\)
\(\chi_{4719}(140,\cdot)\)
\(\chi_{4719}(173,\cdot)\)
\(\chi_{4719}(413,\cdot)\)
\(\chi_{4719}(446,\cdot)\)
\(\chi_{4719}(491,\cdot)\)
\(\chi_{4719}(530,\cdot)\)
\(\chi_{4719}(563,\cdot)\)
\(\chi_{4719}(569,\cdot)\)
\(\chi_{4719}(842,\cdot)\)
\(\chi_{4719}(875,\cdot)\)
\(\chi_{4719}(920,\cdot)\)
\(\chi_{4719}(953,\cdot)\)
\(\chi_{4719}(992,\cdot)\)
\(\chi_{4719}(998,\cdot)\)
\(\chi_{4719}(1031,\cdot)\)
\(\chi_{4719}(1271,\cdot)\)
\(\chi_{4719}(1349,\cdot)\)
\(\chi_{4719}(1382,\cdot)\)
\(\chi_{4719}(1388,\cdot)\)
\(\chi_{4719}(1421,\cdot)\)
\(\chi_{4719}(1427,\cdot)\)
\(\chi_{4719}(1460,\cdot)\)
\(\chi_{4719}(1700,\cdot)\)
\(\chi_{4719}(1733,\cdot)\)
\(\chi_{4719}(1778,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1574,3511,4357)\) → \((-1,e\left(\frac{71}{110}\right),e\left(\frac{5}{6}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(7\) | \(8\) | \(10\) | \(14\) | \(16\) | \(17\) | \(19\) |
| \( \chi_{ 4719 }(530, a) \) |
\(1\) | \(1\) | \(e\left(\frac{323}{330}\right)\) | \(e\left(\frac{158}{165}\right)\) | \(e\left(\frac{42}{55}\right)\) | \(e\left(\frac{113}{165}\right)\) | \(e\left(\frac{103}{110}\right)\) | \(e\left(\frac{49}{66}\right)\) | \(e\left(\frac{73}{110}\right)\) | \(e\left(\frac{151}{165}\right)\) | \(e\left(\frac{131}{165}\right)\) | \(e\left(\frac{122}{165}\right)\) |
sage:chi.jacobi_sum(n)