Properties

Label 14157.20
Modulus $14157$
Conductor $14157$
Order $660$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(14157, base_ring=CyclotomicField(660)) M = H._module chi = DirichletCharacter(H, M([110,456,605]))
 
Copy content pari:[g,chi] = znchar(Mod(20,14157))
 

Basic properties

Modulus: \(14157\)
Conductor: \(14157\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(660\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 14157.iy

\(\chi_{14157}(20,\cdot)\) \(\chi_{14157}(137,\cdot)\) \(\chi_{14157}(158,\cdot)\) \(\chi_{14157}(284,\cdot)\) \(\chi_{14157}(344,\cdot)\) \(\chi_{14157}(401,\cdot)\) \(\chi_{14157}(488,\cdot)\) \(\chi_{14157}(509,\cdot)\) \(\chi_{14157}(752,\cdot)\) \(\chi_{14157}(812,\cdot)\) \(\chi_{14157}(839,\cdot)\) \(\chi_{14157}(929,\cdot)\) \(\chi_{14157}(1094,\cdot)\) \(\chi_{14157}(1103,\cdot)\) \(\chi_{14157}(1280,\cdot)\) \(\chi_{14157}(1307,\cdot)\) \(\chi_{14157}(1424,\cdot)\) \(\chi_{14157}(1445,\cdot)\) \(\chi_{14157}(1571,\cdot)\) \(\chi_{14157}(1631,\cdot)\) \(\chi_{14157}(1688,\cdot)\) \(\chi_{14157}(1796,\cdot)\) \(\chi_{14157}(2039,\cdot)\) \(\chi_{14157}(2099,\cdot)\) \(\chi_{14157}(2126,\cdot)\) \(\chi_{14157}(2216,\cdot)\) \(\chi_{14157}(2264,\cdot)\) \(\chi_{14157}(2381,\cdot)\) \(\chi_{14157}(2390,\cdot)\) \(\chi_{14157}(2567,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{660})$
Fixed field: Number field defined by a degree 660 polynomial (not computed)

Values on generators

\((6293,3511,4357)\) → \((e\left(\frac{1}{6}\right),e\left(\frac{38}{55}\right),e\left(\frac{11}{12}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(7\)\(8\)\(10\)\(14\)\(16\)\(17\)\(19\)
\( \chi_{ 14157 }(20, a) \) \(1\)\(1\)\(e\left(\frac{511}{660}\right)\)\(e\left(\frac{181}{330}\right)\)\(e\left(\frac{139}{660}\right)\)\(e\left(\frac{129}{220}\right)\)\(e\left(\frac{71}{220}\right)\)\(e\left(\frac{65}{66}\right)\)\(e\left(\frac{119}{330}\right)\)\(e\left(\frac{16}{165}\right)\)\(e\left(\frac{31}{165}\right)\)\(e\left(\frac{613}{660}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 14157 }(20,a) \;\) at \(\;a = \) e.g. 2