sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(14157, base_ring=CyclotomicField(660))
M = H._module
chi = DirichletCharacter(H, M([110,456,605]))
pari:[g,chi] = znchar(Mod(20,14157))
Modulus: | \(14157\) | |
Conductor: | \(14157\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(660\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{14157}(20,\cdot)\)
\(\chi_{14157}(137,\cdot)\)
\(\chi_{14157}(158,\cdot)\)
\(\chi_{14157}(284,\cdot)\)
\(\chi_{14157}(344,\cdot)\)
\(\chi_{14157}(401,\cdot)\)
\(\chi_{14157}(488,\cdot)\)
\(\chi_{14157}(509,\cdot)\)
\(\chi_{14157}(752,\cdot)\)
\(\chi_{14157}(812,\cdot)\)
\(\chi_{14157}(839,\cdot)\)
\(\chi_{14157}(929,\cdot)\)
\(\chi_{14157}(1094,\cdot)\)
\(\chi_{14157}(1103,\cdot)\)
\(\chi_{14157}(1280,\cdot)\)
\(\chi_{14157}(1307,\cdot)\)
\(\chi_{14157}(1424,\cdot)\)
\(\chi_{14157}(1445,\cdot)\)
\(\chi_{14157}(1571,\cdot)\)
\(\chi_{14157}(1631,\cdot)\)
\(\chi_{14157}(1688,\cdot)\)
\(\chi_{14157}(1796,\cdot)\)
\(\chi_{14157}(2039,\cdot)\)
\(\chi_{14157}(2099,\cdot)\)
\(\chi_{14157}(2126,\cdot)\)
\(\chi_{14157}(2216,\cdot)\)
\(\chi_{14157}(2264,\cdot)\)
\(\chi_{14157}(2381,\cdot)\)
\(\chi_{14157}(2390,\cdot)\)
\(\chi_{14157}(2567,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((6293,3511,4357)\) → \((e\left(\frac{1}{6}\right),e\left(\frac{38}{55}\right),e\left(\frac{11}{12}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(7\) | \(8\) | \(10\) | \(14\) | \(16\) | \(17\) | \(19\) |
\( \chi_{ 14157 }(20, a) \) |
\(1\) | \(1\) | \(e\left(\frac{511}{660}\right)\) | \(e\left(\frac{181}{330}\right)\) | \(e\left(\frac{139}{660}\right)\) | \(e\left(\frac{129}{220}\right)\) | \(e\left(\frac{71}{220}\right)\) | \(e\left(\frac{65}{66}\right)\) | \(e\left(\frac{119}{330}\right)\) | \(e\left(\frac{16}{165}\right)\) | \(e\left(\frac{31}{165}\right)\) | \(e\left(\frac{613}{660}\right)\) |
sage:chi.jacobi_sum(n)