sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(14157, base_ring=CyclotomicField(660))
M = H._module
chi = DirichletCharacter(H, M([550,168,55]))
         
     
    
    
        
        pari:[g,chi] = znchar(Mod(1796,14157))
         
     
    
  
   | Modulus: |  \(14157\) |   |  
   | Conductor: |  \(14157\) |  
    
         
        sage:chi.conductor()
          
     
    
    
         
        pari:znconreyconductor(g,chi)
          
     
    
 |  
   | Order: |  \(660\) |  
    
         
        sage:chi.multiplicative_order()
          
     
    
    
         
        pari:charorder(g,chi)
          
     
    
 |  
   | Real: |   no  |  
   | Primitive: |   yes |   
    
         
        sage:chi.is_primitive()
          
     
    
    
         
        pari:#znconreyconductor(g,chi)==1
          
     
    
 |  
     | Minimal:  |  yes |  
       | Parity:  |  even |  
    
         
        sage:chi.is_odd()
          
     
    
    
         
        pari:zncharisodd(g,chi)
          
     
    
 |  
   
  \(\chi_{14157}(20,\cdot)\)
  \(\chi_{14157}(137,\cdot)\)
  \(\chi_{14157}(158,\cdot)\)
  \(\chi_{14157}(284,\cdot)\)
  \(\chi_{14157}(344,\cdot)\)
  \(\chi_{14157}(401,\cdot)\)
  \(\chi_{14157}(488,\cdot)\)
  \(\chi_{14157}(509,\cdot)\)
  \(\chi_{14157}(752,\cdot)\)
  \(\chi_{14157}(812,\cdot)\)
  \(\chi_{14157}(839,\cdot)\)
  \(\chi_{14157}(929,\cdot)\)
  \(\chi_{14157}(1094,\cdot)\)
  \(\chi_{14157}(1103,\cdot)\)
  \(\chi_{14157}(1280,\cdot)\)
  \(\chi_{14157}(1307,\cdot)\)
  \(\chi_{14157}(1424,\cdot)\)
  \(\chi_{14157}(1445,\cdot)\)
  \(\chi_{14157}(1571,\cdot)\)
  \(\chi_{14157}(1631,\cdot)\)
  \(\chi_{14157}(1688,\cdot)\)
  \(\chi_{14157}(1796,\cdot)\)
  \(\chi_{14157}(2039,\cdot)\)
  \(\chi_{14157}(2099,\cdot)\)
  \(\chi_{14157}(2126,\cdot)\)
  \(\chi_{14157}(2216,\cdot)\)
  \(\chi_{14157}(2264,\cdot)\)
  \(\chi_{14157}(2381,\cdot)\)
  \(\chi_{14157}(2390,\cdot)\)
  \(\chi_{14157}(2567,\cdot)\)
 ... 
    
        
        sage:chi.galois_orbit()
         
     
    
    
        
        pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
         
     
    
 
\((6293,3511,4357)\) → \((e\left(\frac{5}{6}\right),e\left(\frac{14}{55}\right),e\left(\frac{1}{12}\right))\)
  
    
      
        | \(a\) | 
        \(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(7\) | \(8\) | \(10\) | \(14\) | \(16\) | \(17\) | \(19\) |       
    
    
      | \( \chi_{ 14157 }(1796, a) \) | 
      \(1\) | \(1\) | \(e\left(\frac{113}{660}\right)\) | \(e\left(\frac{113}{330}\right)\) | \(e\left(\frac{497}{660}\right)\) | \(e\left(\frac{7}{220}\right)\) | \(e\left(\frac{113}{220}\right)\) | \(e\left(\frac{61}{66}\right)\) | \(e\left(\frac{67}{330}\right)\) | \(e\left(\frac{113}{165}\right)\) | \(e\left(\frac{23}{165}\right)\) | \(e\left(\frac{359}{660}\right)\) |     
  
 
    
        
        sage:chi.jacobi_sum(n)