Properties

 Modulus $140$ Structure $$C_{2}\times C_{2}\times C_{12}$$ Order $48$

Show commands: PariGP / SageMath

sage: H = DirichletGroup(140)

pari: g = idealstar(,140,2)

Character group

 sage: G.order()  pari: g.no Order = 48 sage: H.invariants()  pari: g.cyc Structure = $$C_{2}\times C_{2}\times C_{12}$$ sage: H.gens()  pari: g.gen Generators = $\chi_{140}(71,\cdot)$, $\chi_{140}(57,\cdot)$, $\chi_{140}(101,\cdot)$

First 32 of 48 characters

Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.

Character Orbit Order Primitive $$-1$$ $$1$$ $$3$$ $$9$$ $$11$$ $$13$$ $$17$$ $$19$$ $$23$$ $$27$$ $$29$$ $$31$$
$$\chi_{140}(1,\cdot)$$ 140.a 1 no $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$
$$\chi_{140}(3,\cdot)$$ 140.x 12 yes $$-1$$ $$1$$ $$e\left(\frac{11}{12}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$-i$$ $$e\left(\frac{11}{12}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{1}{12}\right)$$ $$-i$$ $$-1$$ $$e\left(\frac{2}{3}\right)$$
$$\chi_{140}(9,\cdot)$$ 140.q 6 no $$1$$ $$1$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$-1$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$-1$$ $$1$$ $$e\left(\frac{1}{3}\right)$$
$$\chi_{140}(11,\cdot)$$ 140.t 6 no $$-1$$ $$1$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$1$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$-1$$ $$1$$ $$e\left(\frac{1}{6}\right)$$
$$\chi_{140}(13,\cdot)$$ 140.m 4 no $$1$$ $$1$$ $$-i$$ $$-1$$ $$1$$ $$-i$$ $$i$$ $$1$$ $$i$$ $$i$$ $$-1$$ $$-1$$
$$\chi_{140}(17,\cdot)$$ 140.u 12 no $$1$$ $$1$$ $$e\left(\frac{11}{12}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$i$$ $$e\left(\frac{5}{12}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{1}{12}\right)$$ $$-i$$ $$-1$$ $$e\left(\frac{1}{6}\right)$$
$$\chi_{140}(19,\cdot)$$ 140.s 6 yes $$1$$ $$1$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$1$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$-1$$ $$1$$ $$e\left(\frac{1}{3}\right)$$
$$\chi_{140}(23,\cdot)$$ 140.w 12 yes $$1$$ $$1$$ $$e\left(\frac{1}{12}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$i$$ $$e\left(\frac{1}{12}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{5}{12}\right)$$ $$i$$ $$-1$$ $$e\left(\frac{5}{6}\right)$$
$$\chi_{140}(27,\cdot)$$ 140.j 4 yes $$-1$$ $$1$$ $$-i$$ $$-1$$ $$-1$$ $$i$$ $$-i$$ $$-1$$ $$i$$ $$i$$ $$-1$$ $$1$$
$$\chi_{140}(29,\cdot)$$ 140.e 2 no $$1$$ $$1$$ $$-1$$ $$1$$ $$1$$ $$-1$$ $$-1$$ $$1$$ $$-1$$ $$-1$$ $$1$$ $$1$$
$$\chi_{140}(31,\cdot)$$ 140.o 6 no $$1$$ $$1$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$-1$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$1$$ $$1$$ $$e\left(\frac{2}{3}\right)$$
$$\chi_{140}(33,\cdot)$$ 140.u 12 no $$1$$ $$1$$ $$e\left(\frac{1}{12}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$-i$$ $$e\left(\frac{7}{12}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{11}{12}\right)$$ $$i$$ $$-1$$ $$e\left(\frac{5}{6}\right)$$
$$\chi_{140}(37,\cdot)$$ 140.v 12 no $$-1$$ $$1$$ $$e\left(\frac{1}{12}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$-i$$ $$e\left(\frac{7}{12}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{5}{12}\right)$$ $$i$$ $$-1$$ $$e\left(\frac{1}{3}\right)$$
$$\chi_{140}(39,\cdot)$$ 140.p 6 yes $$-1$$ $$1$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$-1$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$1$$ $$1$$ $$e\left(\frac{1}{6}\right)$$
$$\chi_{140}(41,\cdot)$$ 140.d 2 no $$-1$$ $$1$$ $$-1$$ $$1$$ $$1$$ $$-1$$ $$-1$$ $$-1$$ $$1$$ $$-1$$ $$1$$ $$-1$$
$$\chi_{140}(43,\cdot)$$ 140.k 4 no $$1$$ $$1$$ $$-i$$ $$-1$$ $$-1$$ $$i$$ $$-i$$ $$1$$ $$-i$$ $$i$$ $$-1$$ $$-1$$
$$\chi_{140}(47,\cdot)$$ 140.x 12 yes $$-1$$ $$1$$ $$e\left(\frac{1}{12}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$i$$ $$e\left(\frac{1}{12}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{11}{12}\right)$$ $$i$$ $$-1$$ $$e\left(\frac{1}{3}\right)$$
$$\chi_{140}(51,\cdot)$$ 140.t 6 no $$-1$$ $$1$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$1$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$-1$$ $$1$$ $$e\left(\frac{5}{6}\right)$$
$$\chi_{140}(53,\cdot)$$ 140.v 12 no $$-1$$ $$1$$ $$e\left(\frac{11}{12}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$i$$ $$e\left(\frac{5}{12}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{7}{12}\right)$$ $$-i$$ $$-1$$ $$e\left(\frac{2}{3}\right)$$
$$\chi_{140}(57,\cdot)$$ 140.l 4 no $$-1$$ $$1$$ $$-i$$ $$-1$$ $$1$$ $$-i$$ $$i$$ $$-1$$ $$-i$$ $$i$$ $$-1$$ $$1$$
$$\chi_{140}(59,\cdot)$$ 140.s 6 yes $$1$$ $$1$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$1$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$-1$$ $$1$$ $$e\left(\frac{2}{3}\right)$$
$$\chi_{140}(61,\cdot)$$ 140.r 6 no $$-1$$ $$1$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$-1$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$-1$$ $$1$$ $$e\left(\frac{5}{6}\right)$$
$$\chi_{140}(67,\cdot)$$ 140.w 12 yes $$1$$ $$1$$ $$e\left(\frac{11}{12}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$-i$$ $$e\left(\frac{11}{12}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{7}{12}\right)$$ $$-i$$ $$-1$$ $$e\left(\frac{1}{6}\right)$$
$$\chi_{140}(69,\cdot)$$ 140.h 2 no $$-1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$-1$$ $$-1$$ $$1$$ $$1$$ $$-1$$
$$\chi_{140}(71,\cdot)$$ 140.b 2 no $$-1$$ $$1$$ $$-1$$ $$1$$ $$-1$$ $$1$$ $$1$$ $$-1$$ $$-1$$ $$-1$$ $$1$$ $$-1$$
$$\chi_{140}(73,\cdot)$$ 140.u 12 no $$1$$ $$1$$ $$e\left(\frac{5}{12}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$-i$$ $$e\left(\frac{11}{12}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{7}{12}\right)$$ $$i$$ $$-1$$ $$e\left(\frac{1}{6}\right)$$
$$\chi_{140}(79,\cdot)$$ 140.p 6 yes $$-1$$ $$1$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$-1$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$1$$ $$1$$ $$e\left(\frac{5}{6}\right)$$
$$\chi_{140}(81,\cdot)$$ 140.i 3 no $$1$$ $$1$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$1$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$1$$ $$1$$ $$e\left(\frac{2}{3}\right)$$
$$\chi_{140}(83,\cdot)$$ 140.j 4 yes $$-1$$ $$1$$ $$i$$ $$-1$$ $$-1$$ $$-i$$ $$i$$ $$-1$$ $$-i$$ $$-i$$ $$-1$$ $$1$$
$$\chi_{140}(87,\cdot)$$ 140.x 12 yes $$-1$$ $$1$$ $$e\left(\frac{5}{12}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$i$$ $$e\left(\frac{5}{12}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{7}{12}\right)$$ $$i$$ $$-1$$ $$e\left(\frac{2}{3}\right)$$
$$\chi_{140}(89,\cdot)$$ 140.n 6 no $$-1$$ $$1$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$1$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$1$$ $$1$$ $$e\left(\frac{5}{6}\right)$$
$$\chi_{140}(93,\cdot)$$ 140.v 12 no $$-1$$ $$1$$ $$e\left(\frac{7}{12}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$i$$ $$e\left(\frac{1}{12}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{11}{12}\right)$$ $$-i$$ $$-1$$ $$e\left(\frac{1}{3}\right)$$