Properties

Label 1344.421
Modulus $1344$
Conductor $64$
Order $16$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1344, base_ring=CyclotomicField(16)) M = H._module chi = DirichletCharacter(H, M([0,9,0,0]))
 
Copy content pari:[g,chi] = znchar(Mod(421,1344))
 

Basic properties

Modulus: \(1344\)
Conductor: \(64\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(16\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{64}(37,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 1344.cg

\(\chi_{1344}(85,\cdot)\) \(\chi_{1344}(253,\cdot)\) \(\chi_{1344}(421,\cdot)\) \(\chi_{1344}(589,\cdot)\) \(\chi_{1344}(757,\cdot)\) \(\chi_{1344}(925,\cdot)\) \(\chi_{1344}(1093,\cdot)\) \(\chi_{1344}(1261,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{16})\)
Fixed field: \(\Q(\zeta_{64})^+\)

Values on generators

\((127,1093,449,577)\) → \((1,e\left(\frac{9}{16}\right),1,1)\)

First values

\(a\) \(-1\)\(1\)\(5\)\(11\)\(13\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(37\)
\( \chi_{ 1344 }(421, a) \) \(1\)\(1\)\(e\left(\frac{9}{16}\right)\)\(e\left(\frac{13}{16}\right)\)\(e\left(\frac{7}{16}\right)\)\(-i\)\(e\left(\frac{15}{16}\right)\)\(e\left(\frac{7}{8}\right)\)\(e\left(\frac{1}{8}\right)\)\(e\left(\frac{3}{16}\right)\)\(-1\)\(e\left(\frac{1}{16}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 1344 }(421,a) \;\) at \(\;a = \) e.g. 2