sage: H = DirichletGroup(1309)
pari: g = idealstar(,1309,2)
Character group
sage: G.order()
pari: g.no
| ||
Order | = | 960 |
sage: H.invariants()
pari: g.cyc
| ||
Structure | = | \(C_{2}\times C_{2}\times C_{240}\) |
sage: H.gens()
pari: g.gen
| ||
Generators | = | $\chi_{1309}(1123,\cdot)$, $\chi_{1309}(596,\cdot)$, $\chi_{1309}(309,\cdot)$ |
First 32 of 960 characters
Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.
Character | Orbit | Order | Primitive | \(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(8\) | \(9\) | \(10\) | \(12\) | \(13\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{1309}(1,\cdot)\) | 1309.a | 1 | no | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) |
\(\chi_{1309}(2,\cdot)\) | 1309.cu | 120 | yes | \(-1\) | \(1\) | \(e\left(\frac{1}{60}\right)\) | \(e\left(\frac{1}{120}\right)\) | \(e\left(\frac{1}{30}\right)\) | \(e\left(\frac{53}{120}\right)\) | \(e\left(\frac{1}{40}\right)\) | \(e\left(\frac{1}{20}\right)\) | \(e\left(\frac{1}{60}\right)\) | \(e\left(\frac{11}{24}\right)\) | \(e\left(\frac{1}{24}\right)\) | \(e\left(\frac{3}{5}\right)\) |
\(\chi_{1309}(3,\cdot)\) | 1309.da | 240 | yes | \(1\) | \(1\) | \(e\left(\frac{1}{120}\right)\) | \(e\left(\frac{151}{240}\right)\) | \(e\left(\frac{1}{60}\right)\) | \(e\left(\frac{83}{240}\right)\) | \(e\left(\frac{51}{80}\right)\) | \(e\left(\frac{1}{40}\right)\) | \(e\left(\frac{31}{120}\right)\) | \(e\left(\frac{17}{48}\right)\) | \(e\left(\frac{31}{48}\right)\) | \(e\left(\frac{11}{20}\right)\) |
\(\chi_{1309}(4,\cdot)\) | 1309.cm | 60 | yes | \(1\) | \(1\) | \(e\left(\frac{1}{30}\right)\) | \(e\left(\frac{1}{60}\right)\) | \(e\left(\frac{1}{15}\right)\) | \(e\left(\frac{53}{60}\right)\) | \(e\left(\frac{1}{20}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{1}{30}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{5}\right)\) |
\(\chi_{1309}(5,\cdot)\) | 1309.da | 240 | yes | \(1\) | \(1\) | \(e\left(\frac{53}{120}\right)\) | \(e\left(\frac{83}{240}\right)\) | \(e\left(\frac{53}{60}\right)\) | \(e\left(\frac{79}{240}\right)\) | \(e\left(\frac{63}{80}\right)\) | \(e\left(\frac{13}{40}\right)\) | \(e\left(\frac{83}{120}\right)\) | \(e\left(\frac{37}{48}\right)\) | \(e\left(\frac{11}{48}\right)\) | \(e\left(\frac{3}{20}\right)\) |
\(\chi_{1309}(6,\cdot)\) | 1309.cs | 80 | yes | \(-1\) | \(1\) | \(e\left(\frac{1}{40}\right)\) | \(e\left(\frac{51}{80}\right)\) | \(e\left(\frac{1}{20}\right)\) | \(e\left(\frac{63}{80}\right)\) | \(e\left(\frac{53}{80}\right)\) | \(e\left(\frac{3}{40}\right)\) | \(e\left(\frac{11}{40}\right)\) | \(e\left(\frac{13}{16}\right)\) | \(e\left(\frac{11}{16}\right)\) | \(e\left(\frac{3}{20}\right)\) |
\(\chi_{1309}(8,\cdot)\) | 1309.cf | 40 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{20}\right)\) | \(e\left(\frac{1}{40}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{13}{40}\right)\) | \(e\left(\frac{3}{40}\right)\) | \(e\left(\frac{3}{20}\right)\) | \(e\left(\frac{1}{20}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{4}{5}\right)\) |
\(\chi_{1309}(9,\cdot)\) | 1309.cx | 120 | yes | \(1\) | \(1\) | \(e\left(\frac{1}{60}\right)\) | \(e\left(\frac{31}{120}\right)\) | \(e\left(\frac{1}{30}\right)\) | \(e\left(\frac{83}{120}\right)\) | \(e\left(\frac{11}{40}\right)\) | \(e\left(\frac{1}{20}\right)\) | \(e\left(\frac{31}{60}\right)\) | \(e\left(\frac{17}{24}\right)\) | \(e\left(\frac{7}{24}\right)\) | \(e\left(\frac{1}{10}\right)\) |
\(\chi_{1309}(10,\cdot)\) | 1309.ck | 48 | yes | \(-1\) | \(1\) | \(e\left(\frac{11}{24}\right)\) | \(e\left(\frac{17}{48}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{37}{48}\right)\) | \(e\left(\frac{13}{16}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{17}{24}\right)\) | \(e\left(\frac{11}{48}\right)\) | \(e\left(\frac{13}{48}\right)\) | \(-i\) |
\(\chi_{1309}(12,\cdot)\) | 1309.cj | 48 | no | \(1\) | \(1\) | \(e\left(\frac{1}{24}\right)\) | \(e\left(\frac{31}{48}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{11}{48}\right)\) | \(e\left(\frac{11}{16}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{7}{24}\right)\) | \(e\left(\frac{13}{48}\right)\) | \(e\left(\frac{35}{48}\right)\) | \(-i\) |
\(\chi_{1309}(13,\cdot)\) | 1309.bp | 20 | yes | \(1\) | \(1\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{11}{20}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{3}{20}\right)\) | \(e\left(\frac{3}{20}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(-i\) | \(-i\) | \(e\left(\frac{3}{5}\right)\) |
\(\chi_{1309}(15,\cdot)\) | 1309.cg | 40 | no | \(1\) | \(1\) | \(e\left(\frac{9}{20}\right)\) | \(e\left(\frac{39}{40}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{27}{40}\right)\) | \(e\left(\frac{17}{40}\right)\) | \(e\left(\frac{7}{20}\right)\) | \(e\left(\frac{19}{20}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{7}{10}\right)\) |
\(\chi_{1309}(16,\cdot)\) | 1309.cb | 30 | yes | \(1\) | \(1\) | \(e\left(\frac{1}{15}\right)\) | \(e\left(\frac{1}{30}\right)\) | \(e\left(\frac{2}{15}\right)\) | \(e\left(\frac{23}{30}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{1}{15}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{2}{5}\right)\) |
\(\chi_{1309}(18,\cdot)\) | 1309.ca | 30 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{30}\right)\) | \(e\left(\frac{4}{15}\right)\) | \(e\left(\frac{1}{15}\right)\) | \(e\left(\frac{2}{15}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{8}{15}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{7}{10}\right)\) |
\(\chi_{1309}(19,\cdot)\) | 1309.cw | 120 | yes | \(1\) | \(1\) | \(e\left(\frac{13}{60}\right)\) | \(e\left(\frac{13}{120}\right)\) | \(e\left(\frac{13}{30}\right)\) | \(e\left(\frac{89}{120}\right)\) | \(e\left(\frac{13}{40}\right)\) | \(e\left(\frac{13}{20}\right)\) | \(e\left(\frac{13}{60}\right)\) | \(e\left(\frac{23}{24}\right)\) | \(e\left(\frac{13}{24}\right)\) | \(e\left(\frac{3}{10}\right)\) |
\(\chi_{1309}(20,\cdot)\) | 1309.cr | 80 | yes | \(1\) | \(1\) | \(e\left(\frac{19}{40}\right)\) | \(e\left(\frac{29}{80}\right)\) | \(e\left(\frac{19}{20}\right)\) | \(e\left(\frac{17}{80}\right)\) | \(e\left(\frac{67}{80}\right)\) | \(e\left(\frac{17}{40}\right)\) | \(e\left(\frac{29}{40}\right)\) | \(e\left(\frac{11}{16}\right)\) | \(e\left(\frac{5}{16}\right)\) | \(e\left(\frac{7}{20}\right)\) |
\(\chi_{1309}(23,\cdot)\) | 1309.ci | 48 | no | \(-1\) | \(1\) | \(e\left(\frac{19}{24}\right)\) | \(e\left(\frac{13}{48}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{17}{48}\right)\) | \(e\left(\frac{1}{16}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{13}{24}\right)\) | \(e\left(\frac{7}{48}\right)\) | \(e\left(\frac{41}{48}\right)\) | \(-i\) |
\(\chi_{1309}(24,\cdot)\) | 1309.cz | 240 | yes | \(-1\) | \(1\) | \(e\left(\frac{7}{120}\right)\) | \(e\left(\frac{157}{240}\right)\) | \(e\left(\frac{7}{60}\right)\) | \(e\left(\frac{161}{240}\right)\) | \(e\left(\frac{57}{80}\right)\) | \(e\left(\frac{7}{40}\right)\) | \(e\left(\frac{37}{120}\right)\) | \(e\left(\frac{35}{48}\right)\) | \(e\left(\frac{37}{48}\right)\) | \(e\left(\frac{7}{20}\right)\) |
\(\chi_{1309}(25,\cdot)\) | 1309.cx | 120 | yes | \(1\) | \(1\) | \(e\left(\frac{53}{60}\right)\) | \(e\left(\frac{83}{120}\right)\) | \(e\left(\frac{23}{30}\right)\) | \(e\left(\frac{79}{120}\right)\) | \(e\left(\frac{23}{40}\right)\) | \(e\left(\frac{13}{20}\right)\) | \(e\left(\frac{23}{60}\right)\) | \(e\left(\frac{13}{24}\right)\) | \(e\left(\frac{11}{24}\right)\) | \(e\left(\frac{3}{10}\right)\) |
\(\chi_{1309}(26,\cdot)\) | 1309.cv | 120 | yes | \(-1\) | \(1\) | \(e\left(\frac{37}{60}\right)\) | \(e\left(\frac{67}{120}\right)\) | \(e\left(\frac{7}{30}\right)\) | \(e\left(\frac{71}{120}\right)\) | \(e\left(\frac{7}{40}\right)\) | \(e\left(\frac{17}{20}\right)\) | \(e\left(\frac{7}{60}\right)\) | \(e\left(\frac{5}{24}\right)\) | \(e\left(\frac{19}{24}\right)\) | \(e\left(\frac{1}{5}\right)\) |
\(\chi_{1309}(27,\cdot)\) | 1309.cr | 80 | yes | \(1\) | \(1\) | \(e\left(\frac{1}{40}\right)\) | \(e\left(\frac{71}{80}\right)\) | \(e\left(\frac{1}{20}\right)\) | \(e\left(\frac{3}{80}\right)\) | \(e\left(\frac{73}{80}\right)\) | \(e\left(\frac{3}{40}\right)\) | \(e\left(\frac{31}{40}\right)\) | \(e\left(\frac{1}{16}\right)\) | \(e\left(\frac{15}{16}\right)\) | \(e\left(\frac{13}{20}\right)\) |
\(\chi_{1309}(29,\cdot)\) | 1309.ct | 80 | no | \(1\) | \(1\) | \(e\left(\frac{3}{40}\right)\) | \(e\left(\frac{33}{80}\right)\) | \(e\left(\frac{3}{20}\right)\) | \(e\left(\frac{69}{80}\right)\) | \(e\left(\frac{39}{80}\right)\) | \(e\left(\frac{9}{40}\right)\) | \(e\left(\frac{33}{40}\right)\) | \(e\left(\frac{15}{16}\right)\) | \(e\left(\frac{9}{16}\right)\) | \(e\left(\frac{19}{20}\right)\) |
\(\chi_{1309}(30,\cdot)\) | 1309.cp | 60 | yes | \(-1\) | \(1\) | \(e\left(\frac{7}{15}\right)\) | \(e\left(\frac{59}{60}\right)\) | \(e\left(\frac{14}{15}\right)\) | \(e\left(\frac{7}{60}\right)\) | \(e\left(\frac{9}{20}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{29}{30}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{3}{10}\right)\) |
\(\chi_{1309}(31,\cdot)\) | 1309.da | 240 | yes | \(1\) | \(1\) | \(e\left(\frac{97}{120}\right)\) | \(e\left(\frac{127}{240}\right)\) | \(e\left(\frac{37}{60}\right)\) | \(e\left(\frac{11}{240}\right)\) | \(e\left(\frac{27}{80}\right)\) | \(e\left(\frac{17}{40}\right)\) | \(e\left(\frac{7}{120}\right)\) | \(e\left(\frac{41}{48}\right)\) | \(e\left(\frac{7}{48}\right)\) | \(e\left(\frac{7}{20}\right)\) |
\(\chi_{1309}(32,\cdot)\) | 1309.bw | 24 | yes | \(-1\) | \(1\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{24}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{24}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(i\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{7}{24}\right)\) | \(e\left(\frac{5}{24}\right)\) | \(1\) |
\(\chi_{1309}(36,\cdot)\) | 1309.cg | 40 | no | \(1\) | \(1\) | \(e\left(\frac{1}{20}\right)\) | \(e\left(\frac{11}{40}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{23}{40}\right)\) | \(e\left(\frac{13}{40}\right)\) | \(e\left(\frac{3}{20}\right)\) | \(e\left(\frac{11}{20}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{3}{10}\right)\) |
\(\chi_{1309}(37,\cdot)\) | 1309.db | 240 | yes | \(-1\) | \(1\) | \(e\left(\frac{89}{120}\right)\) | \(e\left(\frac{239}{240}\right)\) | \(e\left(\frac{29}{60}\right)\) | \(e\left(\frac{187}{240}\right)\) | \(e\left(\frac{59}{80}\right)\) | \(e\left(\frac{9}{40}\right)\) | \(e\left(\frac{119}{120}\right)\) | \(e\left(\frac{25}{48}\right)\) | \(e\left(\frac{23}{48}\right)\) | \(e\left(\frac{9}{20}\right)\) |
\(\chi_{1309}(38,\cdot)\) | 1309.cn | 60 | yes | \(-1\) | \(1\) | \(e\left(\frac{7}{30}\right)\) | \(e\left(\frac{7}{60}\right)\) | \(e\left(\frac{7}{15}\right)\) | \(e\left(\frac{11}{60}\right)\) | \(e\left(\frac{7}{20}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{7}{30}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{9}{10}\right)\) |
\(\chi_{1309}(39,\cdot)\) | 1309.cy | 240 | yes | \(1\) | \(1\) | \(e\left(\frac{73}{120}\right)\) | \(e\left(\frac{43}{240}\right)\) | \(e\left(\frac{13}{60}\right)\) | \(e\left(\frac{119}{240}\right)\) | \(e\left(\frac{63}{80}\right)\) | \(e\left(\frac{33}{40}\right)\) | \(e\left(\frac{43}{120}\right)\) | \(e\left(\frac{5}{48}\right)\) | \(e\left(\frac{19}{48}\right)\) | \(e\left(\frac{3}{20}\right)\) |
\(\chi_{1309}(40,\cdot)\) | 1309.cz | 240 | yes | \(-1\) | \(1\) | \(e\left(\frac{59}{120}\right)\) | \(e\left(\frac{89}{240}\right)\) | \(e\left(\frac{59}{60}\right)\) | \(e\left(\frac{157}{240}\right)\) | \(e\left(\frac{69}{80}\right)\) | \(e\left(\frac{19}{40}\right)\) | \(e\left(\frac{89}{120}\right)\) | \(e\left(\frac{7}{48}\right)\) | \(e\left(\frac{17}{48}\right)\) | \(e\left(\frac{19}{20}\right)\) |
\(\chi_{1309}(41,\cdot)\) | 1309.cs | 80 | yes | \(-1\) | \(1\) | \(e\left(\frac{37}{40}\right)\) | \(e\left(\frac{47}{80}\right)\) | \(e\left(\frac{17}{20}\right)\) | \(e\left(\frac{11}{80}\right)\) | \(e\left(\frac{41}{80}\right)\) | \(e\left(\frac{31}{40}\right)\) | \(e\left(\frac{7}{40}\right)\) | \(e\left(\frac{1}{16}\right)\) | \(e\left(\frac{7}{16}\right)\) | \(e\left(\frac{11}{20}\right)\) |
\(\chi_{1309}(43,\cdot)\) | 1309.x | 8 | no | \(-1\) | \(1\) | \(i\) | \(e\left(\frac{1}{8}\right)\) | \(-1\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(-i\) | \(i\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(1\) |