Properties

Label 1309.cs
Modulus $1309$
Conductor $1309$
Order $80$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1309, base_ring=CyclotomicField(80)) M = H._module chi = DirichletCharacter(H, M([40,72,75])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(6,1309)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(1309\)
Conductor: \(1309\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(80\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{80})$
Fixed field: Number field defined by a degree 80 polynomial

First 31 of 32 characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(3\) \(4\) \(5\) \(6\) \(8\) \(9\) \(10\) \(12\) \(13\)
\(\chi_{1309}(6,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1}{40}\right)\) \(e\left(\frac{51}{80}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{63}{80}\right)\) \(e\left(\frac{53}{80}\right)\) \(e\left(\frac{3}{40}\right)\) \(e\left(\frac{11}{40}\right)\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{3}{20}\right)\)
\(\chi_{1309}(41,\cdot)\) \(-1\) \(1\) \(e\left(\frac{37}{40}\right)\) \(e\left(\frac{47}{80}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{11}{80}\right)\) \(e\left(\frac{41}{80}\right)\) \(e\left(\frac{31}{40}\right)\) \(e\left(\frac{7}{40}\right)\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{11}{20}\right)\)
\(\chi_{1309}(62,\cdot)\) \(-1\) \(1\) \(e\left(\frac{33}{40}\right)\) \(e\left(\frac{43}{80}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{39}{80}\right)\) \(e\left(\frac{29}{80}\right)\) \(e\left(\frac{19}{40}\right)\) \(e\left(\frac{3}{40}\right)\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{19}{20}\right)\)
\(\chi_{1309}(90,\cdot)\) \(-1\) \(1\) \(e\left(\frac{19}{40}\right)\) \(e\left(\frac{49}{80}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{37}{80}\right)\) \(e\left(\frac{7}{80}\right)\) \(e\left(\frac{17}{40}\right)\) \(e\left(\frac{9}{40}\right)\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{17}{20}\right)\)
\(\chi_{1309}(139,\cdot)\) \(-1\) \(1\) \(e\left(\frac{23}{40}\right)\) \(e\left(\frac{13}{80}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{49}{80}\right)\) \(e\left(\frac{59}{80}\right)\) \(e\left(\frac{29}{40}\right)\) \(e\left(\frac{13}{40}\right)\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{9}{20}\right)\)
\(\chi_{1309}(160,\cdot)\) \(-1\) \(1\) \(e\left(\frac{21}{40}\right)\) \(e\left(\frac{31}{80}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{43}{80}\right)\) \(e\left(\frac{73}{80}\right)\) \(e\left(\frac{23}{40}\right)\) \(e\left(\frac{31}{40}\right)\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{3}{20}\right)\)
\(\chi_{1309}(167,\cdot)\) \(-1\) \(1\) \(e\left(\frac{39}{40}\right)\) \(e\left(\frac{69}{80}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{57}{80}\right)\) \(e\left(\frac{67}{80}\right)\) \(e\left(\frac{37}{40}\right)\) \(e\left(\frac{29}{40}\right)\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{17}{20}\right)\)
\(\chi_{1309}(216,\cdot)\) \(-1\) \(1\) \(e\left(\frac{3}{40}\right)\) \(e\left(\frac{73}{80}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{29}{80}\right)\) \(e\left(\frac{79}{80}\right)\) \(e\left(\frac{9}{40}\right)\) \(e\left(\frac{33}{40}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{9}{20}\right)\)
\(\chi_{1309}(244,\cdot)\) \(-1\) \(1\) \(e\left(\frac{9}{40}\right)\) \(e\left(\frac{19}{80}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{47}{80}\right)\) \(e\left(\frac{37}{80}\right)\) \(e\left(\frac{27}{40}\right)\) \(e\left(\frac{19}{40}\right)\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{7}{20}\right)\)
\(\chi_{1309}(398,\cdot)\) \(-1\) \(1\) \(e\left(\frac{29}{40}\right)\) \(e\left(\frac{79}{80}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{27}{80}\right)\) \(e\left(\frac{57}{80}\right)\) \(e\left(\frac{7}{40}\right)\) \(e\left(\frac{39}{40}\right)\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{7}{20}\right)\)
\(\chi_{1309}(447,\cdot)\) \(-1\) \(1\) \(e\left(\frac{3}{40}\right)\) \(e\left(\frac{33}{80}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{69}{80}\right)\) \(e\left(\frac{39}{80}\right)\) \(e\left(\frac{9}{40}\right)\) \(e\left(\frac{33}{40}\right)\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{9}{20}\right)\)
\(\chi_{1309}(503,\cdot)\) \(-1\) \(1\) \(e\left(\frac{37}{40}\right)\) \(e\left(\frac{7}{80}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{51}{80}\right)\) \(e\left(\frac{1}{80}\right)\) \(e\left(\frac{31}{40}\right)\) \(e\left(\frac{7}{40}\right)\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{11}{20}\right)\)
\(\chi_{1309}(524,\cdot)\) \(-1\) \(1\) \(e\left(\frac{23}{40}\right)\) \(e\left(\frac{53}{80}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{9}{80}\right)\) \(e\left(\frac{19}{80}\right)\) \(e\left(\frac{29}{40}\right)\) \(e\left(\frac{13}{40}\right)\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{9}{20}\right)\)
\(\chi_{1309}(601,\cdot)\) \(-1\) \(1\) \(e\left(\frac{33}{40}\right)\) \(e\left(\frac{3}{80}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{79}{80}\right)\) \(e\left(\frac{69}{80}\right)\) \(e\left(\frac{19}{40}\right)\) \(e\left(\frac{3}{40}\right)\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{19}{20}\right)\)
\(\chi_{1309}(622,\cdot)\) \(-1\) \(1\) \(e\left(\frac{21}{40}\right)\) \(e\left(\frac{71}{80}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{3}{80}\right)\) \(e\left(\frac{33}{80}\right)\) \(e\left(\frac{23}{40}\right)\) \(e\left(\frac{31}{40}\right)\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{3}{20}\right)\)
\(\chi_{1309}(657,\cdot)\) \(-1\) \(1\) \(e\left(\frac{17}{40}\right)\) \(e\left(\frac{27}{80}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{71}{80}\right)\) \(e\left(\frac{61}{80}\right)\) \(e\left(\frac{11}{40}\right)\) \(e\left(\frac{27}{40}\right)\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{11}{20}\right)\)
\(\chi_{1309}(734,\cdot)\) \(-1\) \(1\) \(e\left(\frac{7}{40}\right)\) \(e\left(\frac{77}{80}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{1}{80}\right)\) \(e\left(\frac{11}{80}\right)\) \(e\left(\frac{21}{40}\right)\) \(e\left(\frac{37}{40}\right)\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{1}{20}\right)\)
\(\chi_{1309}(755,\cdot)\) \(-1\) \(1\) \(e\left(\frac{13}{40}\right)\) \(e\left(\frac{63}{80}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{59}{80}\right)\) \(e\left(\frac{9}{80}\right)\) \(e\left(\frac{39}{40}\right)\) \(e\left(\frac{23}{40}\right)\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{19}{20}\right)\)
\(\chi_{1309}(776,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1}{40}\right)\) \(e\left(\frac{11}{80}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{23}{80}\right)\) \(e\left(\frac{13}{80}\right)\) \(e\left(\frac{3}{40}\right)\) \(e\left(\frac{11}{40}\right)\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{3}{20}\right)\)
\(\chi_{1309}(811,\cdot)\) \(-1\) \(1\) \(e\left(\frac{27}{40}\right)\) \(e\left(\frac{57}{80}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{61}{80}\right)\) \(e\left(\frac{31}{80}\right)\) \(e\left(\frac{1}{40}\right)\) \(e\left(\frac{17}{40}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{1}{20}\right)\)
\(\chi_{1309}(853,\cdot)\) \(-1\) \(1\) \(e\left(\frac{31}{40}\right)\) \(e\left(\frac{61}{80}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{33}{80}\right)\) \(e\left(\frac{43}{80}\right)\) \(e\left(\frac{13}{40}\right)\) \(e\left(\frac{21}{40}\right)\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{13}{20}\right)\)
\(\chi_{1309}(860,\cdot)\) \(-1\) \(1\) \(e\left(\frac{29}{40}\right)\) \(e\left(\frac{39}{80}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{67}{80}\right)\) \(e\left(\frac{17}{80}\right)\) \(e\left(\frac{7}{40}\right)\) \(e\left(\frac{39}{40}\right)\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{7}{20}\right)\)
\(\chi_{1309}(930,\cdot)\) \(-1\) \(1\) \(e\left(\frac{11}{40}\right)\) \(e\left(\frac{41}{80}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{13}{80}\right)\) \(e\left(\frac{63}{80}\right)\) \(e\left(\frac{33}{40}\right)\) \(e\left(\frac{1}{40}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{13}{20}\right)\)
\(\chi_{1309}(1014,\cdot)\) \(-1\) \(1\) \(e\left(\frac{9}{40}\right)\) \(e\left(\frac{59}{80}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{7}{80}\right)\) \(e\left(\frac{77}{80}\right)\) \(e\left(\frac{27}{40}\right)\) \(e\left(\frac{19}{40}\right)\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{7}{20}\right)\)
\(\chi_{1309}(1042,\cdot)\) \(-1\) \(1\) \(e\left(\frac{27}{40}\right)\) \(e\left(\frac{17}{80}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{21}{80}\right)\) \(e\left(\frac{71}{80}\right)\) \(e\left(\frac{1}{40}\right)\) \(e\left(\frac{17}{40}\right)\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{1}{20}\right)\)
\(\chi_{1309}(1091,\cdot)\) \(-1\) \(1\) \(e\left(\frac{39}{40}\right)\) \(e\left(\frac{29}{80}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{17}{80}\right)\) \(e\left(\frac{27}{80}\right)\) \(e\left(\frac{37}{40}\right)\) \(e\left(\frac{29}{40}\right)\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{17}{20}\right)\)
\(\chi_{1309}(1119,\cdot)\) \(-1\) \(1\) \(e\left(\frac{7}{40}\right)\) \(e\left(\frac{37}{80}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{41}{80}\right)\) \(e\left(\frac{51}{80}\right)\) \(e\left(\frac{21}{40}\right)\) \(e\left(\frac{37}{40}\right)\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{1}{20}\right)\)
\(\chi_{1309}(1161,\cdot)\) \(-1\) \(1\) \(e\left(\frac{11}{40}\right)\) \(e\left(\frac{1}{80}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{53}{80}\right)\) \(e\left(\frac{23}{80}\right)\) \(e\left(\frac{33}{40}\right)\) \(e\left(\frac{1}{40}\right)\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{13}{20}\right)\)
\(\chi_{1309}(1168,\cdot)\) \(-1\) \(1\) \(e\left(\frac{19}{40}\right)\) \(e\left(\frac{9}{80}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{77}{80}\right)\) \(e\left(\frac{47}{80}\right)\) \(e\left(\frac{17}{40}\right)\) \(e\left(\frac{9}{40}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{17}{20}\right)\)
\(\chi_{1309}(1196,\cdot)\) \(-1\) \(1\) \(e\left(\frac{17}{40}\right)\) \(e\left(\frac{67}{80}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{31}{80}\right)\) \(e\left(\frac{21}{80}\right)\) \(e\left(\frac{11}{40}\right)\) \(e\left(\frac{27}{40}\right)\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{11}{20}\right)\)
\(\chi_{1309}(1217,\cdot)\) \(-1\) \(1\) \(e\left(\frac{13}{40}\right)\) \(e\left(\frac{23}{80}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{19}{80}\right)\) \(e\left(\frac{49}{80}\right)\) \(e\left(\frac{39}{40}\right)\) \(e\left(\frac{23}{40}\right)\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{19}{20}\right)\)