sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(128, base_ring=CyclotomicField(32))
M = H._module
chi = DirichletCharacter(H, M([0,23]))
pari:[g,chi] = znchar(Mod(109,128))
Modulus: | \(128\) | |
Conductor: | \(128\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(32\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{128}(5,\cdot)\)
\(\chi_{128}(13,\cdot)\)
\(\chi_{128}(21,\cdot)\)
\(\chi_{128}(29,\cdot)\)
\(\chi_{128}(37,\cdot)\)
\(\chi_{128}(45,\cdot)\)
\(\chi_{128}(53,\cdot)\)
\(\chi_{128}(61,\cdot)\)
\(\chi_{128}(69,\cdot)\)
\(\chi_{128}(77,\cdot)\)
\(\chi_{128}(85,\cdot)\)
\(\chi_{128}(93,\cdot)\)
\(\chi_{128}(101,\cdot)\)
\(\chi_{128}(109,\cdot)\)
\(\chi_{128}(117,\cdot)\)
\(\chi_{128}(125,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((127,5)\) → \((1,e\left(\frac{23}{32}\right))\)
\(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(19\) | \(21\) |
\( \chi_{ 128 }(109, a) \) |
\(1\) | \(1\) | \(e\left(\frac{5}{32}\right)\) | \(e\left(\frac{23}{32}\right)\) | \(e\left(\frac{3}{16}\right)\) | \(e\left(\frac{5}{16}\right)\) | \(e\left(\frac{3}{32}\right)\) | \(e\left(\frac{25}{32}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{17}{32}\right)\) | \(e\left(\frac{11}{32}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)