sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1275, base_ring=CyclotomicField(40))
M = H._module
chi = DirichletCharacter(H, M([20,12,25]))
pari:[g,chi] = znchar(Mod(314,1275))
| Modulus: | \(1275\) | |
| Conductor: | \(1275\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(40\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{1275}(59,\cdot)\)
\(\chi_{1275}(104,\cdot)\)
\(\chi_{1275}(134,\cdot)\)
\(\chi_{1275}(179,\cdot)\)
\(\chi_{1275}(314,\cdot)\)
\(\chi_{1275}(359,\cdot)\)
\(\chi_{1275}(389,\cdot)\)
\(\chi_{1275}(434,\cdot)\)
\(\chi_{1275}(569,\cdot)\)
\(\chi_{1275}(614,\cdot)\)
\(\chi_{1275}(644,\cdot)\)
\(\chi_{1275}(689,\cdot)\)
\(\chi_{1275}(869,\cdot)\)
\(\chi_{1275}(944,\cdot)\)
\(\chi_{1275}(1079,\cdot)\)
\(\chi_{1275}(1154,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((851,52,751)\) → \((-1,e\left(\frac{3}{10}\right),e\left(\frac{5}{8}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(7\) | \(8\) | \(11\) | \(13\) | \(14\) | \(16\) | \(19\) | \(22\) |
| \( \chi_{ 1275 }(314, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{11}{20}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{13}{20}\right)\) | \(e\left(\frac{27}{40}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{37}{40}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{3}{20}\right)\) | \(e\left(\frac{9}{40}\right)\) |
sage:chi.jacobi_sum(n)