| L(s) = 1 | + (−0.951 − 0.309i)2-s + (0.809 + 0.587i)4-s + (−0.707 + 0.707i)7-s + (−0.587 − 0.809i)8-s + (−0.453 − 0.891i)11-s + (0.309 + 0.951i)13-s + (0.891 − 0.453i)14-s + (0.309 + 0.951i)16-s + (0.587 + 0.809i)19-s + (0.156 + 0.987i)22-s + (0.453 + 0.891i)23-s − i·26-s + (−0.987 + 0.156i)28-s + (0.156 + 0.987i)29-s + (0.987 + 0.156i)31-s − i·32-s + ⋯ |
| L(s) = 1 | + (−0.951 − 0.309i)2-s + (0.809 + 0.587i)4-s + (−0.707 + 0.707i)7-s + (−0.587 − 0.809i)8-s + (−0.453 − 0.891i)11-s + (0.309 + 0.951i)13-s + (0.891 − 0.453i)14-s + (0.309 + 0.951i)16-s + (0.587 + 0.809i)19-s + (0.156 + 0.987i)22-s + (0.453 + 0.891i)23-s − i·26-s + (−0.987 + 0.156i)28-s + (0.156 + 0.987i)29-s + (0.987 + 0.156i)31-s − i·32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1275 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.623 + 0.782i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1275 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.623 + 0.782i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.3304267006 + 0.6858426584i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.3304267006 + 0.6858426584i\) |
| \(L(1)\) |
\(\approx\) |
\(0.6365515330 + 0.08363675097i\) |
| \(L(1)\) |
\(\approx\) |
\(0.6365515330 + 0.08363675097i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
| 17 | \( 1 \) |
| good | 2 | \( 1 + (-0.951 - 0.309i)T \) |
| 7 | \( 1 + (-0.707 + 0.707i)T \) |
| 11 | \( 1 + (-0.453 - 0.891i)T \) |
| 13 | \( 1 + (0.309 + 0.951i)T \) |
| 19 | \( 1 + (0.587 + 0.809i)T \) |
| 23 | \( 1 + (0.453 + 0.891i)T \) |
| 29 | \( 1 + (0.156 + 0.987i)T \) |
| 31 | \( 1 + (0.987 + 0.156i)T \) |
| 37 | \( 1 + (-0.453 + 0.891i)T \) |
| 41 | \( 1 + (-0.891 - 0.453i)T \) |
| 43 | \( 1 - iT \) |
| 47 | \( 1 + (0.809 + 0.587i)T \) |
| 53 | \( 1 + (-0.587 + 0.809i)T \) |
| 59 | \( 1 + (0.951 - 0.309i)T \) |
| 61 | \( 1 + (-0.453 - 0.891i)T \) |
| 67 | \( 1 + (0.809 - 0.587i)T \) |
| 71 | \( 1 + (-0.156 - 0.987i)T \) |
| 73 | \( 1 + (-0.891 + 0.453i)T \) |
| 79 | \( 1 + (0.987 - 0.156i)T \) |
| 83 | \( 1 + (0.587 + 0.809i)T \) |
| 89 | \( 1 + (0.309 - 0.951i)T \) |
| 97 | \( 1 + (0.156 + 0.987i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−20.49840163125820671055760961627, −19.68761305795566086134086597773, −19.09541534536061628549176936295, −18.08128616407510503707554600093, −17.60420033938577414925738176431, −16.85145961583971895569105976251, −15.973473202086054481378688063276, −15.46326504409621856391039323603, −14.67912601482537518767435746209, −13.567666132925787699932561796091, −12.87249431853589613365850537131, −11.8862330361643443940974431580, −10.910347147298798754917646473366, −10.171146776851143027285262828, −9.74234819709888141328644737615, −8.70335316948957799096280415482, −7.853545417225545382931935540672, −7.13028467410964035058908727953, −6.45653798306474305562570198058, −5.45982835830627112202096451085, −4.46753586502912491410792286147, −3.13072074434403582078744723777, −2.36688237877119535917553667493, −0.99026062934120898179484182912, −0.269342390330543365983622649,
1.00845803787959340194492603699, 2.00476846084908416476018768642, 3.09629981292982913778328708625, 3.603818395548661765688544178217, 5.18902124540118257896791168841, 6.14528965745398343108187829078, 6.82923271500328960864501876897, 7.85028323880244228656035148491, 8.69998972207041178540753954453, 9.2363055792706906114940382816, 10.0966178785585258308180925389, 10.88033060673828899769894012086, 11.78860063650325178998180444834, 12.266299021831806836009835972164, 13.31652907404799948321197971459, 14.07485468904170423825761793580, 15.415653494174942987707059259596, 15.86228951999176375972662119669, 16.575629131151057546031949977594, 17.286072945518686272702017895, 18.372925288246695715220436149429, 18.849549871524191791935310290500, 19.262426901893592563484976210232, 20.30329923517937509386808155550, 21.03253100601461949920637292187