sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1275, base_ring=CyclotomicField(40))
M = H._module
chi = DirichletCharacter(H, M([20,14,15]))
pari:[g,chi] = znchar(Mod(1103,1275))
| Modulus: | \(1275\) | |
| Conductor: | \(1275\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(40\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{1275}(53,\cdot)\)
\(\chi_{1275}(77,\cdot)\)
\(\chi_{1275}(83,\cdot)\)
\(\chi_{1275}(212,\cdot)\)
\(\chi_{1275}(308,\cdot)\)
\(\chi_{1275}(338,\cdot)\)
\(\chi_{1275}(467,\cdot)\)
\(\chi_{1275}(563,\cdot)\)
\(\chi_{1275}(587,\cdot)\)
\(\chi_{1275}(722,\cdot)\)
\(\chi_{1275}(842,\cdot)\)
\(\chi_{1275}(848,\cdot)\)
\(\chi_{1275}(977,\cdot)\)
\(\chi_{1275}(1073,\cdot)\)
\(\chi_{1275}(1097,\cdot)\)
\(\chi_{1275}(1103,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((851,52,751)\) → \((-1,e\left(\frac{7}{20}\right),e\left(\frac{3}{8}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(7\) | \(8\) | \(11\) | \(13\) | \(14\) | \(16\) | \(19\) | \(22\) |
| \( \chi_{ 1275 }(1103, a) \) |
\(1\) | \(1\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{29}{40}\right)\) | \(e\left(\frac{3}{20}\right)\) | \(e\left(\frac{39}{40}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{11}{20}\right)\) | \(e\left(\frac{33}{40}\right)\) |
sage:chi.jacobi_sum(n)