| L(s) = 1 | + (0.809 + 0.587i)2-s + (0.309 + 0.951i)4-s + (0.707 − 0.707i)7-s + (−0.309 + 0.951i)8-s + (−0.156 − 0.987i)11-s + (0.587 + 0.809i)13-s + (0.987 − 0.156i)14-s + (−0.809 + 0.587i)16-s + (−0.951 − 0.309i)19-s + (0.453 − 0.891i)22-s + (0.987 − 0.156i)23-s + i·26-s + (0.891 + 0.453i)28-s + (0.891 + 0.453i)29-s + (0.453 + 0.891i)31-s − 32-s + ⋯ |
| L(s) = 1 | + (0.809 + 0.587i)2-s + (0.309 + 0.951i)4-s + (0.707 − 0.707i)7-s + (−0.309 + 0.951i)8-s + (−0.156 − 0.987i)11-s + (0.587 + 0.809i)13-s + (0.987 − 0.156i)14-s + (−0.809 + 0.587i)16-s + (−0.951 − 0.309i)19-s + (0.453 − 0.891i)22-s + (0.987 − 0.156i)23-s + i·26-s + (0.891 + 0.453i)28-s + (0.891 + 0.453i)29-s + (0.453 + 0.891i)31-s − 32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1275 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.572 + 0.819i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1275 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.572 + 0.819i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(2.466255886 + 1.285161224i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.466255886 + 1.285161224i\) |
| \(L(1)\) |
\(\approx\) |
\(1.708430391 + 0.6065788597i\) |
| \(L(1)\) |
\(\approx\) |
\(1.708430391 + 0.6065788597i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
| 17 | \( 1 \) |
| good | 2 | \( 1 + (0.809 + 0.587i)T \) |
| 7 | \( 1 + (0.707 - 0.707i)T \) |
| 11 | \( 1 + (-0.156 - 0.987i)T \) |
| 13 | \( 1 + (0.587 + 0.809i)T \) |
| 19 | \( 1 + (-0.951 - 0.309i)T \) |
| 23 | \( 1 + (0.987 - 0.156i)T \) |
| 29 | \( 1 + (0.891 + 0.453i)T \) |
| 31 | \( 1 + (0.453 + 0.891i)T \) |
| 37 | \( 1 + (-0.987 - 0.156i)T \) |
| 41 | \( 1 + (0.987 + 0.156i)T \) |
| 43 | \( 1 + T \) |
| 47 | \( 1 + (0.951 - 0.309i)T \) |
| 53 | \( 1 + (0.309 + 0.951i)T \) |
| 59 | \( 1 + (0.587 + 0.809i)T \) |
| 61 | \( 1 + (-0.156 - 0.987i)T \) |
| 67 | \( 1 + (-0.951 - 0.309i)T \) |
| 71 | \( 1 + (0.891 + 0.453i)T \) |
| 73 | \( 1 + (-0.156 - 0.987i)T \) |
| 79 | \( 1 + (-0.453 + 0.891i)T \) |
| 83 | \( 1 + (0.309 - 0.951i)T \) |
| 89 | \( 1 + (0.809 + 0.587i)T \) |
| 97 | \( 1 + (0.453 - 0.891i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−20.84816390572808252310950328521, −20.562659554473887975684822800017, −19.38124455717360167795853574431, −18.87489068798070544770163567509, −17.88906179758885629595999504565, −17.35135374269552543872732558104, −15.945805744533586288971155071662, −15.26736824048650106415171010749, −14.84061627106108997330872535841, −13.94566692946916886464616122546, −12.999719855992993169252379958145, −12.464916884659846620695216755766, −11.6950284055673482713034576269, −10.85519302247168426629831805370, −10.234390818209435114833870319320, −9.23574127171177727903781610335, −8.335977639727422361611674401819, −7.32713311326305902274533559754, −6.25626133373158548587365274776, −5.51541544852910008727356639704, −4.71270631273308998741356790338, −3.957110036344872210596289846219, −2.74351251257180124157373871052, −2.11399574822600787905311089664, −1.0287419939211596996364206908,
1.11367099786305304416136834439, 2.41274067251599498757017219857, 3.434423184090237220081247699026, 4.2854920475755645544085683134, 4.95344887914540146167338656662, 5.978191876670385715911490341985, 6.75166029576787889100562905523, 7.48252990126782836558201124911, 8.539836215529606940687729768185, 8.887457442105854559111862152793, 10.67282389729030653276043757067, 10.97041644208826732876380654671, 11.93794657044448223303845259055, 12.79874480548468053184583197015, 13.79173417891527365402427157613, 13.99344695872606081355098286251, 14.90887378462565223509313788858, 15.80088001714937817072885168403, 16.466889799720783139092788593, 17.16751651154222330694045675232, 17.82602863152948979175178125058, 18.89076651332812585239314288187, 19.69752804179022280821650555156, 20.775273142771680492389941710931, 21.26087892751110821004250181478