Properties

Label 1248.251
Modulus $1248$
Conductor $1248$
Order $24$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1248, base_ring=CyclotomicField(24)) M = H._module chi = DirichletCharacter(H, M([12,3,12,4]))
 
Copy content pari:[g,chi] = znchar(Mod(251,1248))
 

Basic properties

Modulus: \(1248\)
Conductor: \(1248\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(24\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 1248.dz

\(\chi_{1248}(179,\cdot)\) \(\chi_{1248}(251,\cdot)\) \(\chi_{1248}(491,\cdot)\) \(\chi_{1248}(563,\cdot)\) \(\chi_{1248}(803,\cdot)\) \(\chi_{1248}(875,\cdot)\) \(\chi_{1248}(1115,\cdot)\) \(\chi_{1248}(1187,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{24})\)
Fixed field: 24.24.100025723073455953280051851768449931504820595788844367872.1

Values on generators

\((703,1093,833,769)\) → \((-1,e\left(\frac{1}{8}\right),-1,e\left(\frac{1}{6}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(35\)
\( \chi_{ 1248 }(251, a) \) \(1\)\(1\)\(e\left(\frac{1}{8}\right)\)\(e\left(\frac{7}{12}\right)\)\(e\left(\frac{19}{24}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{5}{24}\right)\)\(e\left(\frac{5}{12}\right)\)\(i\)\(e\left(\frac{13}{24}\right)\)\(1\)\(e\left(\frac{17}{24}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 1248 }(251,a) \;\) at \(\;a = \) e.g. 2