sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1248, base_ring=CyclotomicField(24))
M = H._module
chi = DirichletCharacter(H, M([12,3,12,4]))
pari:[g,chi] = znchar(Mod(251,1248))
| Modulus: | \(1248\) | |
| Conductor: | \(1248\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(24\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{1248}(179,\cdot)\)
\(\chi_{1248}(251,\cdot)\)
\(\chi_{1248}(491,\cdot)\)
\(\chi_{1248}(563,\cdot)\)
\(\chi_{1248}(803,\cdot)\)
\(\chi_{1248}(875,\cdot)\)
\(\chi_{1248}(1115,\cdot)\)
\(\chi_{1248}(1187,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((703,1093,833,769)\) → \((-1,e\left(\frac{1}{8}\right),-1,e\left(\frac{1}{6}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(35\) |
| \( \chi_{ 1248 }(251, a) \) |
\(1\) | \(1\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{19}{24}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{24}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(i\) | \(e\left(\frac{13}{24}\right)\) | \(1\) | \(e\left(\frac{17}{24}\right)\) |
sage:chi.jacobi_sum(n)