| L(s) = 1 | + (0.707 + 0.707i)5-s + (−0.866 − 0.5i)7-s + (0.258 − 0.965i)11-s + (−0.5 + 0.866i)17-s + (0.258 + 0.965i)19-s + (−0.866 + 0.5i)23-s + i·25-s + (−0.965 − 0.258i)29-s + 31-s + (−0.258 − 0.965i)35-s + (−0.258 + 0.965i)37-s + (−0.866 + 0.5i)41-s + (−0.965 + 0.258i)43-s + 47-s + (0.5 + 0.866i)49-s + ⋯ |
| L(s) = 1 | + (0.707 + 0.707i)5-s + (−0.866 − 0.5i)7-s + (0.258 − 0.965i)11-s + (−0.5 + 0.866i)17-s + (0.258 + 0.965i)19-s + (−0.866 + 0.5i)23-s + i·25-s + (−0.965 − 0.258i)29-s + 31-s + (−0.258 − 0.965i)35-s + (−0.258 + 0.965i)37-s + (−0.866 + 0.5i)41-s + (−0.965 + 0.258i)43-s + 47-s + (0.5 + 0.866i)49-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1248 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.0526 + 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1248 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.0526 + 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8778843294 + 0.8328590017i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.8778843294 + 0.8328590017i\) |
| \(L(1)\) |
\(\approx\) |
\(0.9958615982 + 0.2018855674i\) |
| \(L(1)\) |
\(\approx\) |
\(0.9958615982 + 0.2018855674i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 13 | \( 1 \) |
| good | 5 | \( 1 + (0.707 + 0.707i)T \) |
| 7 | \( 1 + (-0.866 - 0.5i)T \) |
| 11 | \( 1 + (0.258 - 0.965i)T \) |
| 17 | \( 1 + (-0.5 + 0.866i)T \) |
| 19 | \( 1 + (0.258 + 0.965i)T \) |
| 23 | \( 1 + (-0.866 + 0.5i)T \) |
| 29 | \( 1 + (-0.965 - 0.258i)T \) |
| 31 | \( 1 + T \) |
| 37 | \( 1 + (-0.258 + 0.965i)T \) |
| 41 | \( 1 + (-0.866 + 0.5i)T \) |
| 43 | \( 1 + (-0.965 + 0.258i)T \) |
| 47 | \( 1 + T \) |
| 53 | \( 1 + (0.707 + 0.707i)T \) |
| 59 | \( 1 + (0.965 - 0.258i)T \) |
| 61 | \( 1 + (-0.258 - 0.965i)T \) |
| 67 | \( 1 + (0.965 + 0.258i)T \) |
| 71 | \( 1 + (0.866 + 0.5i)T \) |
| 73 | \( 1 - iT \) |
| 79 | \( 1 + T \) |
| 83 | \( 1 + (-0.707 + 0.707i)T \) |
| 89 | \( 1 + (0.866 - 0.5i)T \) |
| 97 | \( 1 + (0.5 - 0.866i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−20.77289416047495793420768450993, −20.17053366518275718855191413548, −19.55866594090104670419318557451, −18.44960174410855142091508725675, −17.86273469972308559283673166108, −17.09779657281664288710359807652, −16.26249965412591479044093084276, −15.64276543552843329262136438393, −14.80949099225119130228197574579, −13.67877383741155049049155068188, −13.25550643050169970521376377810, −12.29405324368586300376203375531, −11.858764968817311394824430290963, −10.53597821353062927735058529414, −9.6876719007727295569578694306, −9.22677782917730798061310857751, −8.46563914974676079594392029439, −7.154650701045665246003878922516, −6.54568906481750360646813041844, −5.53301205531230576882237470051, −4.84721571288835736126942036564, −3.8488907469729985970139249265, −2.56077511879244424794018729595, −1.95341754816497693879634930700, −0.48569970102459205666050431619,
1.23710875955035736189601715259, 2.320915120816851571826673150610, 3.41179961738944200379021284334, 3.88672105719273494739984735992, 5.40525559911597247301226494674, 6.224114275901614501706802085353, 6.63560665402830078767482950999, 7.76676345100838931949642113004, 8.64503027193129623563613231597, 9.771322554020597884575105815304, 10.136081288225120557115264256361, 11.02524282104866988543747353137, 11.85654900090204173888096389478, 12.959549259668091526277579994069, 13.62658147619643745312958184922, 14.1244410402690849998066261588, 15.12002608053351806683589196141, 15.895324696299063364242725752392, 16.923293911821979834767625314489, 17.19146385211417661075053113360, 18.45008427646706781758791004804, 18.84229350472451207900568550685, 19.70215040288251357589766543394, 20.45252912918691539512652369988, 21.48900260152015268892684597169