Properties

Label 124509.884
Modulus $124509$
Conductor $124509$
Order $16170$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(124509, base_ring=CyclotomicField(16170)) M = H._module chi = DirichletCharacter(H, M([8085,6050,6174]))
 
Copy content pari:[g,chi] = znchar(Mod(884,124509))
 

Basic properties

Modulus: \(124509\)
Conductor: \(124509\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(16170\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 124509.hf

\(\chi_{124509}(53,\cdot)\) \(\chi_{124509}(86,\cdot)\) \(\chi_{124509}(137,\cdot)\) \(\chi_{124509}(158,\cdot)\) \(\chi_{124509}(170,\cdot)\) \(\chi_{124509}(179,\cdot)\) \(\chi_{124509}(191,\cdot)\) \(\chi_{124509}(212,\cdot)\) \(\chi_{124509}(284,\cdot)\) \(\chi_{124509}(317,\cdot)\) \(\chi_{124509}(368,\cdot)\) \(\chi_{124509}(389,\cdot)\) \(\chi_{124509}(401,\cdot)\) \(\chi_{124509}(443,\cdot)\) \(\chi_{124509}(515,\cdot)\) \(\chi_{124509}(548,\cdot)\) \(\chi_{124509}(599,\cdot)\) \(\chi_{124509}(620,\cdot)\) \(\chi_{124509}(641,\cdot)\) \(\chi_{124509}(653,\cdot)\) \(\chi_{124509}(674,\cdot)\) \(\chi_{124509}(746,\cdot)\) \(\chi_{124509}(779,\cdot)\) \(\chi_{124509}(830,\cdot)\) \(\chi_{124509}(872,\cdot)\) \(\chi_{124509}(884,\cdot)\) \(\chi_{124509}(905,\cdot)\) \(\chi_{124509}(1061,\cdot)\) \(\chi_{124509}(1082,\cdot)\) \(\chi_{124509}(1094,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{8085})$
Fixed field: Number field defined by a degree 16170 polynomial (not computed)

Values on generators

\((41504,37390,2059)\) → \((-1,e\left(\frac{55}{147}\right),e\left(\frac{21}{55}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(8\)\(10\)\(13\)\(16\)\(17\)\(19\)\(20\)
\( \chi_{ 124509 }(884, a) \) \(-1\)\(1\)\(e\left(\frac{7549}{16170}\right)\)\(e\left(\frac{7549}{8085}\right)\)\(e\left(\frac{9781}{16170}\right)\)\(e\left(\frac{2159}{5390}\right)\)\(e\left(\frac{116}{1617}\right)\)\(e\left(\frac{529}{2695}\right)\)\(e\left(\frac{7013}{8085}\right)\)\(e\left(\frac{9101}{16170}\right)\)\(e\left(\frac{59}{165}\right)\)\(e\left(\frac{2903}{5390}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 124509 }(884,a) \;\) at \(\;a = \) e.g. 2