sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(124509, base_ring=CyclotomicField(16170))
M = H._module
chi = DirichletCharacter(H, M([8085,550,9114]))
pari:[g,chi] = znchar(Mod(1082,124509))
| Modulus: | \(124509\) | |
| Conductor: | \(124509\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(16170\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{124509}(53,\cdot)\)
\(\chi_{124509}(86,\cdot)\)
\(\chi_{124509}(137,\cdot)\)
\(\chi_{124509}(158,\cdot)\)
\(\chi_{124509}(170,\cdot)\)
\(\chi_{124509}(179,\cdot)\)
\(\chi_{124509}(191,\cdot)\)
\(\chi_{124509}(212,\cdot)\)
\(\chi_{124509}(284,\cdot)\)
\(\chi_{124509}(317,\cdot)\)
\(\chi_{124509}(368,\cdot)\)
\(\chi_{124509}(389,\cdot)\)
\(\chi_{124509}(401,\cdot)\)
\(\chi_{124509}(443,\cdot)\)
\(\chi_{124509}(515,\cdot)\)
\(\chi_{124509}(548,\cdot)\)
\(\chi_{124509}(599,\cdot)\)
\(\chi_{124509}(620,\cdot)\)
\(\chi_{124509}(641,\cdot)\)
\(\chi_{124509}(653,\cdot)\)
\(\chi_{124509}(674,\cdot)\)
\(\chi_{124509}(746,\cdot)\)
\(\chi_{124509}(779,\cdot)\)
\(\chi_{124509}(830,\cdot)\)
\(\chi_{124509}(872,\cdot)\)
\(\chi_{124509}(884,\cdot)\)
\(\chi_{124509}(905,\cdot)\)
\(\chi_{124509}(1061,\cdot)\)
\(\chi_{124509}(1082,\cdot)\)
\(\chi_{124509}(1094,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((41504,37390,2059)\) → \((-1,e\left(\frac{5}{147}\right),e\left(\frac{31}{55}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(8\) | \(10\) | \(13\) | \(16\) | \(17\) | \(19\) | \(20\) |
| \( \chi_{ 124509 }(1082, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{10709}{16170}\right)\) | \(e\left(\frac{2624}{8085}\right)\) | \(e\left(\frac{3161}{16170}\right)\) | \(e\left(\frac{5319}{5390}\right)\) | \(e\left(\frac{1387}{1617}\right)\) | \(e\left(\frac{1674}{2695}\right)\) | \(e\left(\frac{5248}{8085}\right)\) | \(e\left(\frac{15661}{16170}\right)\) | \(e\left(\frac{19}{165}\right)\) | \(e\left(\frac{2803}{5390}\right)\) |
sage:chi.jacobi_sum(n)