sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(124509, base_ring=CyclotomicField(16170))
M = H._module
chi = DirichletCharacter(H, M([8085,11825,14406]))
pari:[g,chi] = znchar(Mod(47,124509))
| Modulus: | \(124509\) | |
| Conductor: | \(124509\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(16170\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{124509}(5,\cdot)\)
\(\chi_{124509}(26,\cdot)\)
\(\chi_{124509}(38,\cdot)\)
\(\chi_{124509}(47,\cdot)\)
\(\chi_{124509}(59,\cdot)\)
\(\chi_{124509}(152,\cdot)\)
\(\chi_{124509}(185,\cdot)\)
\(\chi_{124509}(236,\cdot)\)
\(\chi_{124509}(257,\cdot)\)
\(\chi_{124509}(278,\cdot)\)
\(\chi_{124509}(290,\cdot)\)
\(\chi_{124509}(311,\cdot)\)
\(\chi_{124509}(383,\cdot)\)
\(\chi_{124509}(416,\cdot)\)
\(\chi_{124509}(467,\cdot)\)
\(\chi_{124509}(488,\cdot)\)
\(\chi_{124509}(500,\cdot)\)
\(\chi_{124509}(542,\cdot)\)
\(\chi_{124509}(647,\cdot)\)
\(\chi_{124509}(698,\cdot)\)
\(\chi_{124509}(719,\cdot)\)
\(\chi_{124509}(731,\cdot)\)
\(\chi_{124509}(740,\cdot)\)
\(\chi_{124509}(752,\cdot)\)
\(\chi_{124509}(773,\cdot)\)
\(\chi_{124509}(845,\cdot)\)
\(\chi_{124509}(878,\cdot)\)
\(\chi_{124509}(929,\cdot)\)
\(\chi_{124509}(983,\cdot)\)
\(\chi_{124509}(1004,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((41504,37390,2059)\) → \((-1,e\left(\frac{215}{294}\right),e\left(\frac{49}{55}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(8\) | \(10\) | \(13\) | \(16\) | \(17\) | \(19\) | \(20\) |
| \( \chi_{ 124509 }(47, a) \) |
\(1\) | \(1\) | \(e\left(\frac{4231}{16170}\right)\) | \(e\left(\frac{4231}{8085}\right)\) | \(e\left(\frac{5132}{8085}\right)\) | \(e\left(\frac{4231}{5390}\right)\) | \(e\left(\frac{2899}{3234}\right)\) | \(e\left(\frac{2157}{5390}\right)\) | \(e\left(\frac{377}{8085}\right)\) | \(e\left(\frac{3532}{8085}\right)\) | \(e\left(\frac{37}{330}\right)\) | \(e\left(\frac{426}{2695}\right)\) |
sage:chi.jacobi_sum(n)