Properties

Label 124509.1004
Modulus $124509$
Conductor $124509$
Order $16170$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(124509, base_ring=CyclotomicField(16170)) M = H._module chi = DirichletCharacter(H, M([8085,11275,9996]))
 
Copy content pari:[g,chi] = znchar(Mod(1004,124509))
 

Basic properties

Modulus: \(124509\)
Conductor: \(124509\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(16170\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 124509.hh

\(\chi_{124509}(5,\cdot)\) \(\chi_{124509}(26,\cdot)\) \(\chi_{124509}(38,\cdot)\) \(\chi_{124509}(47,\cdot)\) \(\chi_{124509}(59,\cdot)\) \(\chi_{124509}(152,\cdot)\) \(\chi_{124509}(185,\cdot)\) \(\chi_{124509}(236,\cdot)\) \(\chi_{124509}(257,\cdot)\) \(\chi_{124509}(278,\cdot)\) \(\chi_{124509}(290,\cdot)\) \(\chi_{124509}(311,\cdot)\) \(\chi_{124509}(383,\cdot)\) \(\chi_{124509}(416,\cdot)\) \(\chi_{124509}(467,\cdot)\) \(\chi_{124509}(488,\cdot)\) \(\chi_{124509}(500,\cdot)\) \(\chi_{124509}(542,\cdot)\) \(\chi_{124509}(647,\cdot)\) \(\chi_{124509}(698,\cdot)\) \(\chi_{124509}(719,\cdot)\) \(\chi_{124509}(731,\cdot)\) \(\chi_{124509}(740,\cdot)\) \(\chi_{124509}(752,\cdot)\) \(\chi_{124509}(773,\cdot)\) \(\chi_{124509}(845,\cdot)\) \(\chi_{124509}(878,\cdot)\) \(\chi_{124509}(929,\cdot)\) \(\chi_{124509}(983,\cdot)\) \(\chi_{124509}(1004,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{8085})$
Fixed field: Number field defined by a degree 16170 polynomial (not computed)

Values on generators

\((41504,37390,2059)\) → \((-1,e\left(\frac{205}{294}\right),e\left(\frac{34}{55}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(8\)\(10\)\(13\)\(16\)\(17\)\(19\)\(20\)
\( \chi_{ 124509 }(1004, a) \) \(1\)\(1\)\(e\left(\frac{6311}{16170}\right)\)\(e\left(\frac{6311}{8085}\right)\)\(e\left(\frac{3772}{8085}\right)\)\(e\left(\frac{921}{5390}\right)\)\(e\left(\frac{2771}{3234}\right)\)\(e\left(\frac{867}{5390}\right)\)\(e\left(\frac{4537}{8085}\right)\)\(e\left(\frac{1802}{8085}\right)\)\(e\left(\frac{47}{330}\right)\)\(e\left(\frac{666}{2695}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 124509 }(1004,a) \;\) at \(\;a = \) e.g. 2