sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(124509, base_ring=CyclotomicField(16170))
M = H._module
chi = DirichletCharacter(H, M([8085,4565,12789]))
pari:[g,chi] = znchar(Mod(425,124509))
| Modulus: | \(124509\) | |
| Conductor: | \(124509\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(16170\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{124509}(17,\cdot)\)
\(\chi_{124509}(101,\cdot)\)
\(\chi_{124509}(173,\cdot)\)
\(\chi_{124509}(194,\cdot)\)
\(\chi_{124509}(206,\cdot)\)
\(\chi_{124509}(248,\cdot)\)
\(\chi_{124509}(299,\cdot)\)
\(\chi_{124509}(332,\cdot)\)
\(\chi_{124509}(404,\cdot)\)
\(\chi_{124509}(425,\cdot)\)
\(\chi_{124509}(437,\cdot)\)
\(\chi_{124509}(446,\cdot)\)
\(\chi_{124509}(458,\cdot)\)
\(\chi_{124509}(479,\cdot)\)
\(\chi_{124509}(530,\cdot)\)
\(\chi_{124509}(563,\cdot)\)
\(\chi_{124509}(635,\cdot)\)
\(\chi_{124509}(677,\cdot)\)
\(\chi_{124509}(689,\cdot)\)
\(\chi_{124509}(710,\cdot)\)
\(\chi_{124509}(761,\cdot)\)
\(\chi_{124509}(794,\cdot)\)
\(\chi_{124509}(866,\cdot)\)
\(\chi_{124509}(899,\cdot)\)
\(\chi_{124509}(908,\cdot)\)
\(\chi_{124509}(920,\cdot)\)
\(\chi_{124509}(992,\cdot)\)
\(\chi_{124509}(1025,\cdot)\)
\(\chi_{124509}(1118,\cdot)\)
\(\chi_{124509}(1130,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((41504,37390,2059)\) → \((-1,e\left(\frac{83}{294}\right),e\left(\frac{87}{110}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(8\) | \(10\) | \(13\) | \(16\) | \(17\) | \(19\) | \(20\) |
| \( \chi_{ 124509 }(425, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{482}{8085}\right)\) | \(e\left(\frac{964}{8085}\right)\) | \(e\left(\frac{1733}{8085}\right)\) | \(e\left(\frac{482}{2695}\right)\) | \(e\left(\frac{443}{1617}\right)\) | \(e\left(\frac{919}{2695}\right)\) | \(e\left(\frac{1928}{8085}\right)\) | \(e\left(\frac{5051}{16170}\right)\) | \(e\left(\frac{134}{165}\right)\) | \(e\left(\frac{899}{2695}\right)\) |
sage:chi.jacobi_sum(n)