Properties

Label 124509.332
Modulus $124509$
Conductor $124509$
Order $16170$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(124509, base_ring=CyclotomicField(16170)) M = H._module chi = DirichletCharacter(H, M([8085,3355,4557]))
 
Copy content pari:[g,chi] = znchar(Mod(332,124509))
 

Basic properties

Modulus: \(124509\)
Conductor: \(124509\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(16170\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 124509.hd

\(\chi_{124509}(17,\cdot)\) \(\chi_{124509}(101,\cdot)\) \(\chi_{124509}(173,\cdot)\) \(\chi_{124509}(194,\cdot)\) \(\chi_{124509}(206,\cdot)\) \(\chi_{124509}(248,\cdot)\) \(\chi_{124509}(299,\cdot)\) \(\chi_{124509}(332,\cdot)\) \(\chi_{124509}(404,\cdot)\) \(\chi_{124509}(425,\cdot)\) \(\chi_{124509}(437,\cdot)\) \(\chi_{124509}(446,\cdot)\) \(\chi_{124509}(458,\cdot)\) \(\chi_{124509}(479,\cdot)\) \(\chi_{124509}(530,\cdot)\) \(\chi_{124509}(563,\cdot)\) \(\chi_{124509}(635,\cdot)\) \(\chi_{124509}(677,\cdot)\) \(\chi_{124509}(689,\cdot)\) \(\chi_{124509}(710,\cdot)\) \(\chi_{124509}(761,\cdot)\) \(\chi_{124509}(794,\cdot)\) \(\chi_{124509}(866,\cdot)\) \(\chi_{124509}(899,\cdot)\) \(\chi_{124509}(908,\cdot)\) \(\chi_{124509}(920,\cdot)\) \(\chi_{124509}(992,\cdot)\) \(\chi_{124509}(1025,\cdot)\) \(\chi_{124509}(1118,\cdot)\) \(\chi_{124509}(1130,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{8085})$
Fixed field: Number field defined by a degree 16170 polynomial (not computed)

Values on generators

\((41504,37390,2059)\) → \((-1,e\left(\frac{61}{294}\right),e\left(\frac{31}{110}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(8\)\(10\)\(13\)\(16\)\(17\)\(19\)\(20\)
\( \chi_{ 124509 }(332, a) \) \(-1\)\(1\)\(e\left(\frac{271}{8085}\right)\)\(e\left(\frac{542}{8085}\right)\)\(e\left(\frac{3004}{8085}\right)\)\(e\left(\frac{271}{2695}\right)\)\(e\left(\frac{655}{1617}\right)\)\(e\left(\frac{1607}{2695}\right)\)\(e\left(\frac{1084}{8085}\right)\)\(e\left(\frac{8023}{16170}\right)\)\(e\left(\frac{37}{165}\right)\)\(e\left(\frac{1182}{2695}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 124509 }(332,a) \;\) at \(\;a = \) e.g. 2