![Copy content]() sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1225, base_ring=CyclotomicField(210))
M = H._module
chi = DirichletCharacter(H, M([126,25]))
        sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1225, base_ring=CyclotomicField(210))
M = H._module
chi = DirichletCharacter(H, M([126,25]))
         
     
    
    
        ![Copy content]() pari:[g,chi] = znchar(Mod(96,1225))
        pari:[g,chi] = znchar(Mod(96,1225))
         
     
    
  
   | Modulus: | \(1225\) |  | 
   | Conductor: | \(1225\) | 
        ![Copy content]() sage:chi.conductor()   
        ![Copy content]() pari:znconreyconductor(g,chi)   | 
   | Order: | \(210\) | 
        ![Copy content]() sage:chi.multiplicative_order()   
        ![Copy content]() pari:charorder(g,chi)   | 
   | Real: | no | 
   | Primitive: | yes | 
        ![Copy content]() sage:chi.is_primitive()   
        ![Copy content]() pari:#znconreyconductor(g,chi)==1   | 
     | Minimal: | yes | 
       | Parity: | odd | 
        ![Copy content]() sage:chi.is_odd()   
        ![Copy content]() pari:zncharisodd(g,chi)   | 
   
  \(\chi_{1225}(61,\cdot)\)
  \(\chi_{1225}(66,\cdot)\)
  \(\chi_{1225}(96,\cdot)\)
  \(\chi_{1225}(131,\cdot)\)
  \(\chi_{1225}(136,\cdot)\)
  \(\chi_{1225}(171,\cdot)\)
  \(\chi_{1225}(206,\cdot)\)
  \(\chi_{1225}(236,\cdot)\)
  \(\chi_{1225}(241,\cdot)\)
  \(\chi_{1225}(271,\cdot)\)
  \(\chi_{1225}(306,\cdot)\)
  \(\chi_{1225}(311,\cdot)\)
  \(\chi_{1225}(341,\cdot)\)
  \(\chi_{1225}(346,\cdot)\)
  \(\chi_{1225}(381,\cdot)\)
  \(\chi_{1225}(416,\cdot)\)
  \(\chi_{1225}(446,\cdot)\)
  \(\chi_{1225}(481,\cdot)\)
  \(\chi_{1225}(486,\cdot)\)
  \(\chi_{1225}(516,\cdot)\)
  \(\chi_{1225}(556,\cdot)\)
  \(\chi_{1225}(586,\cdot)\)
  \(\chi_{1225}(591,\cdot)\)
  \(\chi_{1225}(621,\cdot)\)
  \(\chi_{1225}(661,\cdot)\)
  \(\chi_{1225}(691,\cdot)\)
  \(\chi_{1225}(696,\cdot)\)
  \(\chi_{1225}(731,\cdot)\)
  \(\chi_{1225}(761,\cdot)\)
  \(\chi_{1225}(796,\cdot)\)
 ... 
    
        ![Copy content]() sage:chi.galois_orbit()
        sage:chi.galois_orbit()
         
     
    
    
        ![Copy content]() pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
        pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
         
     
    
 
\((1177,101)\) → \((e\left(\frac{3}{5}\right),e\left(\frac{5}{42}\right))\)
  
    
      
        | \(a\) | \(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(8\) | \(9\) | \(11\) | \(12\) | \(13\) | \(16\) | 
    
    
      | \( \chi_{ 1225 }(96, a) \) | \(-1\) | \(1\) | \(e\left(\frac{73}{105}\right)\) | \(e\left(\frac{67}{210}\right)\) | \(e\left(\frac{41}{105}\right)\) | \(e\left(\frac{1}{70}\right)\) | \(e\left(\frac{3}{35}\right)\) | \(e\left(\frac{67}{105}\right)\) | \(e\left(\frac{38}{105}\right)\) | \(e\left(\frac{149}{210}\right)\) | \(e\left(\frac{23}{70}\right)\) | \(e\left(\frac{82}{105}\right)\) | 
  
 
    
        ![Copy content]() sage:chi.jacobi_sum(n)
        sage:chi.jacobi_sum(n)