sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1225, base_ring=CyclotomicField(210))
M = H._module
chi = DirichletCharacter(H, M([168,55]))
pari:[g,chi] = znchar(Mod(61,1225))
| Modulus: | \(1225\) | |
| Conductor: | \(1225\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(210\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{1225}(61,\cdot)\)
\(\chi_{1225}(66,\cdot)\)
\(\chi_{1225}(96,\cdot)\)
\(\chi_{1225}(131,\cdot)\)
\(\chi_{1225}(136,\cdot)\)
\(\chi_{1225}(171,\cdot)\)
\(\chi_{1225}(206,\cdot)\)
\(\chi_{1225}(236,\cdot)\)
\(\chi_{1225}(241,\cdot)\)
\(\chi_{1225}(271,\cdot)\)
\(\chi_{1225}(306,\cdot)\)
\(\chi_{1225}(311,\cdot)\)
\(\chi_{1225}(341,\cdot)\)
\(\chi_{1225}(346,\cdot)\)
\(\chi_{1225}(381,\cdot)\)
\(\chi_{1225}(416,\cdot)\)
\(\chi_{1225}(446,\cdot)\)
\(\chi_{1225}(481,\cdot)\)
\(\chi_{1225}(486,\cdot)\)
\(\chi_{1225}(516,\cdot)\)
\(\chi_{1225}(556,\cdot)\)
\(\chi_{1225}(586,\cdot)\)
\(\chi_{1225}(591,\cdot)\)
\(\chi_{1225}(621,\cdot)\)
\(\chi_{1225}(661,\cdot)\)
\(\chi_{1225}(691,\cdot)\)
\(\chi_{1225}(696,\cdot)\)
\(\chi_{1225}(731,\cdot)\)
\(\chi_{1225}(761,\cdot)\)
\(\chi_{1225}(796,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1177,101)\) → \((e\left(\frac{4}{5}\right),e\left(\frac{11}{42}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(8\) | \(9\) | \(11\) | \(12\) | \(13\) | \(16\) |
| \( \chi_{ 1225 }(61, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{64}{105}\right)\) | \(e\left(\frac{181}{210}\right)\) | \(e\left(\frac{23}{105}\right)\) | \(e\left(\frac{33}{70}\right)\) | \(e\left(\frac{29}{35}\right)\) | \(e\left(\frac{76}{105}\right)\) | \(e\left(\frac{29}{105}\right)\) | \(e\left(\frac{17}{210}\right)\) | \(e\left(\frac{59}{70}\right)\) | \(e\left(\frac{46}{105}\right)\) |
sage:chi.jacobi_sum(n)