sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1225, base_ring=CyclotomicField(10))
M = H._module
chi = DirichletCharacter(H, M([4,5]))
pari:[g,chi] = znchar(Mod(881,1225))
\(\chi_{1225}(146,\cdot)\)
\(\chi_{1225}(391,\cdot)\)
\(\chi_{1225}(636,\cdot)\)
\(\chi_{1225}(881,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1177,101)\) → \((e\left(\frac{2}{5}\right),-1)\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(8\) | \(9\) | \(11\) | \(12\) | \(13\) | \(16\) |
| \( \chi_{ 1225 }(881, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{3}{5}\right)\) |
sage:chi.jacobi_sum(n)