Properties

Label 1225.146
Modulus $1225$
Conductor $175$
Order $10$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Learn more about

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(1225)
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([6,5]))
 
pari: [g,chi] = znchar(Mod(146,1225))
 

Basic properties

Modulus: \(1225\)
Conductor: \(175\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(10\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{175}(146,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1225.m

\(\chi_{1225}(146,\cdot)\) \(\chi_{1225}(391,\cdot)\) \(\chi_{1225}(636,\cdot)\) \(\chi_{1225}(881,\cdot)\)

sage: chi.galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Values on generators

\((1177,101)\) → \((e\left(\frac{3}{5}\right),-1)\)

Values

\(-1\)\(1\)\(2\)\(3\)\(4\)\(6\)\(8\)\(9\)\(11\)\(12\)\(13\)\(16\)
\(-1\)\(1\)\(e\left(\frac{3}{5}\right)\)\(e\left(\frac{7}{10}\right)\)\(e\left(\frac{1}{5}\right)\)\(e\left(\frac{3}{10}\right)\)\(e\left(\frac{4}{5}\right)\)\(e\left(\frac{2}{5}\right)\)\(e\left(\frac{3}{5}\right)\)\(e\left(\frac{9}{10}\right)\)\(e\left(\frac{9}{10}\right)\)\(e\left(\frac{2}{5}\right)\)
value at e.g. 2

Related number fields

Field of values: \(\Q(\zeta_{5})\)
Fixed field: 10.0.2564544677734375.1