# Properties

 Label 1225.146 Modulus $1225$ Conductor $175$ Order $10$ Real no Primitive no Minimal yes Parity odd

# Related objects

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter

sage: H = DirichletGroup(1225)

sage: M = H._module

sage: chi = DirichletCharacter(H, M([6,5]))

pari: [g,chi] = znchar(Mod(146,1225))

## Basic properties

 Modulus: $$1225$$ Conductor: $$175$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$10$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: no Primitive: no, induced from $$\chi_{175}(146,\cdot)$$ sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: yes Parity: odd sage: chi.is_odd()  pari: zncharisodd(g,chi)

## Galois orbit 1225.m

sage: chi.galois_orbit()

pari: order = charorder(g,chi)

pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Values on generators

$$(1177,101)$$ → $$(e\left(\frac{3}{5}\right),-1)$$

## Values

 $$-1$$ $$1$$ $$2$$ $$3$$ $$4$$ $$6$$ $$8$$ $$9$$ $$11$$ $$12$$ $$13$$ $$16$$ $$-1$$ $$1$$ $$e\left(\frac{3}{5}\right)$$ $$e\left(\frac{7}{10}\right)$$ $$e\left(\frac{1}{5}\right)$$ $$e\left(\frac{3}{10}\right)$$ $$e\left(\frac{4}{5}\right)$$ $$e\left(\frac{2}{5}\right)$$ $$e\left(\frac{3}{5}\right)$$ $$e\left(\frac{9}{10}\right)$$ $$e\left(\frac{9}{10}\right)$$ $$e\left(\frac{2}{5}\right)$$
 value at e.g. 2

## Related number fields

 Field of values: $$\Q(\zeta_{5})$$ Fixed field: 10.0.2564544677734375.1