sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1225, base_ring=CyclotomicField(420))
M = H._module
chi = DirichletCharacter(H, M([231,290]))
         
     
    
    
        
        pari:[g,chi] = znchar(Mod(348,1225))
         
     
    
  
   | Modulus: |  \(1225\) |   |  
   | Conductor: |  \(1225\) |  
    
         
        sage:chi.conductor()
          
     
    
    
         
        pari:znconreyconductor(g,chi)
          
     
    
 |  
   | Order: |  \(420\) |  
    
         
        sage:chi.multiplicative_order()
          
     
    
    
         
        pari:charorder(g,chi)
          
     
    
 |  
   | Real: |   no  |  
   | Primitive: |   yes |   
    
         
        sage:chi.is_primitive()
          
     
    
    
         
        pari:#znconreyconductor(g,chi)==1
          
     
    
 |  
     | Minimal:  |  yes |  
       | Parity:  |  even |  
    
         
        sage:chi.is_odd()
          
     
    
    
         
        pari:zncharisodd(g,chi)
          
     
    
 |  
   
  \(\chi_{1225}(3,\cdot)\)
  \(\chi_{1225}(12,\cdot)\)
  \(\chi_{1225}(17,\cdot)\)
  \(\chi_{1225}(33,\cdot)\)
  \(\chi_{1225}(38,\cdot)\)
  \(\chi_{1225}(47,\cdot)\)
  \(\chi_{1225}(52,\cdot)\)
  \(\chi_{1225}(73,\cdot)\)
  \(\chi_{1225}(87,\cdot)\)
  \(\chi_{1225}(103,\cdot)\)
  \(\chi_{1225}(108,\cdot)\)
  \(\chi_{1225}(122,\cdot)\)
  \(\chi_{1225}(138,\cdot)\)
  \(\chi_{1225}(152,\cdot)\)
  \(\chi_{1225}(173,\cdot)\)
  \(\chi_{1225}(187,\cdot)\)
  \(\chi_{1225}(192,\cdot)\)
  \(\chi_{1225}(208,\cdot)\)
  \(\chi_{1225}(213,\cdot)\)
  \(\chi_{1225}(222,\cdot)\)
  \(\chi_{1225}(248,\cdot)\)
  \(\chi_{1225}(262,\cdot)\)
  \(\chi_{1225}(278,\cdot)\)
  \(\chi_{1225}(283,\cdot)\)
  \(\chi_{1225}(292,\cdot)\)
  \(\chi_{1225}(297,\cdot)\)
  \(\chi_{1225}(327,\cdot)\)
  \(\chi_{1225}(348,\cdot)\)
  \(\chi_{1225}(353,\cdot)\)
  \(\chi_{1225}(367,\cdot)\)
 ... 
    
        
        sage:chi.galois_orbit()
         
     
    
    
        
        pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
         
     
    
 
\((1177,101)\) → \((e\left(\frac{11}{20}\right),e\left(\frac{29}{42}\right))\)
  
    
      
        | \(a\) | 
        \(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(8\) | \(9\) | \(11\) | \(12\) | \(13\) | \(16\) |       
    
    
      | \( \chi_{ 1225 }(348, a) \) | 
      \(1\) | \(1\) | \(e\left(\frac{211}{420}\right)\) | \(e\left(\frac{227}{420}\right)\) | \(e\left(\frac{1}{210}\right)\) | \(e\left(\frac{3}{70}\right)\) | \(e\left(\frac{71}{140}\right)\) | \(e\left(\frac{17}{210}\right)\) | \(e\left(\frac{44}{105}\right)\) | \(e\left(\frac{229}{420}\right)\) | \(e\left(\frac{33}{140}\right)\) | \(e\left(\frac{1}{105}\right)\) |     
  
 
    
        
        sage:chi.jacobi_sum(n)