sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1225, base_ring=CyclotomicField(420))
M = H._module
chi = DirichletCharacter(H, M([189,110]))
pari:[g,chi] = znchar(Mod(12,1225))
| Modulus: | \(1225\) | |
| Conductor: | \(1225\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(420\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{1225}(3,\cdot)\)
\(\chi_{1225}(12,\cdot)\)
\(\chi_{1225}(17,\cdot)\)
\(\chi_{1225}(33,\cdot)\)
\(\chi_{1225}(38,\cdot)\)
\(\chi_{1225}(47,\cdot)\)
\(\chi_{1225}(52,\cdot)\)
\(\chi_{1225}(73,\cdot)\)
\(\chi_{1225}(87,\cdot)\)
\(\chi_{1225}(103,\cdot)\)
\(\chi_{1225}(108,\cdot)\)
\(\chi_{1225}(122,\cdot)\)
\(\chi_{1225}(138,\cdot)\)
\(\chi_{1225}(152,\cdot)\)
\(\chi_{1225}(173,\cdot)\)
\(\chi_{1225}(187,\cdot)\)
\(\chi_{1225}(192,\cdot)\)
\(\chi_{1225}(208,\cdot)\)
\(\chi_{1225}(213,\cdot)\)
\(\chi_{1225}(222,\cdot)\)
\(\chi_{1225}(248,\cdot)\)
\(\chi_{1225}(262,\cdot)\)
\(\chi_{1225}(278,\cdot)\)
\(\chi_{1225}(283,\cdot)\)
\(\chi_{1225}(292,\cdot)\)
\(\chi_{1225}(297,\cdot)\)
\(\chi_{1225}(327,\cdot)\)
\(\chi_{1225}(348,\cdot)\)
\(\chi_{1225}(353,\cdot)\)
\(\chi_{1225}(367,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1177,101)\) → \((e\left(\frac{9}{20}\right),e\left(\frac{11}{42}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(8\) | \(9\) | \(11\) | \(12\) | \(13\) | \(16\) |
| \( \chi_{ 1225 }(12, a) \) |
\(1\) | \(1\) | \(e\left(\frac{109}{420}\right)\) | \(e\left(\frac{173}{420}\right)\) | \(e\left(\frac{109}{210}\right)\) | \(e\left(\frac{47}{70}\right)\) | \(e\left(\frac{109}{140}\right)\) | \(e\left(\frac{173}{210}\right)\) | \(e\left(\frac{71}{105}\right)\) | \(e\left(\frac{391}{420}\right)\) | \(e\left(\frac{27}{140}\right)\) | \(e\left(\frac{4}{105}\right)\) |
sage:chi.jacobi_sum(n)