sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1225, base_ring=CyclotomicField(42))
M = H._module
chi = DirichletCharacter(H, M([0,1]))
pari:[g,chi] = znchar(Mod(101,1225))
\(\chi_{1225}(26,\cdot)\)
\(\chi_{1225}(101,\cdot)\)
\(\chi_{1225}(201,\cdot)\)
\(\chi_{1225}(376,\cdot)\)
\(\chi_{1225}(451,\cdot)\)
\(\chi_{1225}(551,\cdot)\)
\(\chi_{1225}(626,\cdot)\)
\(\chi_{1225}(726,\cdot)\)
\(\chi_{1225}(801,\cdot)\)
\(\chi_{1225}(976,\cdot)\)
\(\chi_{1225}(1076,\cdot)\)
\(\chi_{1225}(1151,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1177,101)\) → \((1,e\left(\frac{1}{42}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(8\) | \(9\) | \(11\) | \(12\) | \(13\) | \(16\) |
| \( \chi_{ 1225 }(101, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{13}{21}\right)\) | \(e\left(\frac{1}{42}\right)\) | \(e\left(\frac{5}{21}\right)\) | \(e\left(\frac{9}{14}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{1}{21}\right)\) | \(e\left(\frac{20}{21}\right)\) | \(e\left(\frac{11}{42}\right)\) | \(e\left(\frac{11}{14}\right)\) | \(e\left(\frac{10}{21}\right)\) |
sage:chi.jacobi_sum(n)