Properties

Label 12138.cn
Modulus $12138$
Conductor $2023$
Order $204$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(12138, base_ring=CyclotomicField(204)) M = H._module chi = DirichletCharacter(H, M([0,136,111])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(319,12138)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(12138\)
Conductor: \(2023\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(204\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 2023.bg
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{204})$
Fixed field: Number field defined by a degree 204 polynomial (not computed)

First 31 of 64 characters in Galois orbit

Character \(-1\) \(1\) \(5\) \(11\) \(13\) \(19\) \(23\) \(25\) \(29\) \(31\) \(37\) \(41\)
\(\chi_{12138}(319,\cdot)\) \(1\) \(1\) \(e\left(\frac{191}{204}\right)\) \(e\left(\frac{37}{204}\right)\) \(e\left(\frac{11}{17}\right)\) \(e\left(\frac{97}{102}\right)\) \(e\left(\frac{137}{204}\right)\) \(e\left(\frac{89}{102}\right)\) \(e\left(\frac{1}{68}\right)\) \(e\left(\frac{115}{204}\right)\) \(e\left(\frac{107}{204}\right)\) \(e\left(\frac{3}{68}\right)\)
\(\chi_{12138}(361,\cdot)\) \(1\) \(1\) \(e\left(\frac{185}{204}\right)\) \(e\left(\frac{7}{204}\right)\) \(e\left(\frac{3}{17}\right)\) \(e\left(\frac{79}{102}\right)\) \(e\left(\frac{59}{204}\right)\) \(e\left(\frac{83}{102}\right)\) \(e\left(\frac{59}{68}\right)\) \(e\left(\frac{121}{204}\right)\) \(e\left(\frac{125}{204}\right)\) \(e\left(\frac{41}{68}\right)\)
\(\chi_{12138}(625,\cdot)\) \(1\) \(1\) \(e\left(\frac{175}{204}\right)\) \(e\left(\frac{161}{204}\right)\) \(e\left(\frac{1}{17}\right)\) \(e\left(\frac{83}{102}\right)\) \(e\left(\frac{133}{204}\right)\) \(e\left(\frac{73}{102}\right)\) \(e\left(\frac{65}{68}\right)\) \(e\left(\frac{131}{204}\right)\) \(e\left(\frac{19}{204}\right)\) \(e\left(\frac{59}{68}\right)\)
\(\chi_{12138}(667,\cdot)\) \(1\) \(1\) \(e\left(\frac{133}{204}\right)\) \(e\left(\frac{155}{204}\right)\) \(e\left(\frac{13}{17}\right)\) \(e\left(\frac{59}{102}\right)\) \(e\left(\frac{199}{204}\right)\) \(e\left(\frac{31}{102}\right)\) \(e\left(\frac{63}{68}\right)\) \(e\left(\frac{173}{204}\right)\) \(e\left(\frac{145}{204}\right)\) \(e\left(\frac{53}{68}\right)\)
\(\chi_{12138}(1033,\cdot)\) \(1\) \(1\) \(e\left(\frac{131}{204}\right)\) \(e\left(\frac{145}{204}\right)\) \(e\left(\frac{16}{17}\right)\) \(e\left(\frac{19}{102}\right)\) \(e\left(\frac{173}{204}\right)\) \(e\left(\frac{29}{102}\right)\) \(e\left(\frac{37}{68}\right)\) \(e\left(\frac{175}{204}\right)\) \(e\left(\frac{83}{204}\right)\) \(e\left(\frac{43}{68}\right)\)
\(\chi_{12138}(1075,\cdot)\) \(1\) \(1\) \(e\left(\frac{41}{204}\right)\) \(e\left(\frac{103}{204}\right)\) \(e\left(\frac{15}{17}\right)\) \(e\left(\frac{55}{102}\right)\) \(e\left(\frac{23}{204}\right)\) \(e\left(\frac{41}{102}\right)\) \(e\left(\frac{23}{68}\right)\) \(e\left(\frac{61}{204}\right)\) \(e\left(\frac{149}{204}\right)\) \(e\left(\frac{1}{68}\right)\)
\(\chi_{12138}(1339,\cdot)\) \(1\) \(1\) \(e\left(\frac{115}{204}\right)\) \(e\left(\frac{65}{204}\right)\) \(e\left(\frac{6}{17}\right)\) \(e\left(\frac{5}{102}\right)\) \(e\left(\frac{169}{204}\right)\) \(e\left(\frac{13}{102}\right)\) \(e\left(\frac{33}{68}\right)\) \(e\left(\frac{191}{204}\right)\) \(e\left(\frac{199}{204}\right)\) \(e\left(\frac{31}{68}\right)\)
\(\chi_{12138}(1381,\cdot)\) \(1\) \(1\) \(e\left(\frac{193}{204}\right)\) \(e\left(\frac{47}{204}\right)\) \(e\left(\frac{8}{17}\right)\) \(e\left(\frac{35}{102}\right)\) \(e\left(\frac{163}{204}\right)\) \(e\left(\frac{91}{102}\right)\) \(e\left(\frac{27}{68}\right)\) \(e\left(\frac{113}{204}\right)\) \(e\left(\frac{169}{204}\right)\) \(e\left(\frac{13}{68}\right)\)
\(\chi_{12138}(1747,\cdot)\) \(1\) \(1\) \(e\left(\frac{71}{204}\right)\) \(e\left(\frac{49}{204}\right)\) \(e\left(\frac{4}{17}\right)\) \(e\left(\frac{43}{102}\right)\) \(e\left(\frac{5}{204}\right)\) \(e\left(\frac{71}{102}\right)\) \(e\left(\frac{5}{68}\right)\) \(e\left(\frac{31}{204}\right)\) \(e\left(\frac{59}{204}\right)\) \(e\left(\frac{15}{68}\right)\)
\(\chi_{12138}(1789,\cdot)\) \(1\) \(1\) \(e\left(\frac{101}{204}\right)\) \(e\left(\frac{199}{204}\right)\) \(e\left(\frac{10}{17}\right)\) \(e\left(\frac{31}{102}\right)\) \(e\left(\frac{191}{204}\right)\) \(e\left(\frac{101}{102}\right)\) \(e\left(\frac{55}{68}\right)\) \(e\left(\frac{1}{204}\right)\) \(e\left(\frac{173}{204}\right)\) \(e\left(\frac{29}{68}\right)\)
\(\chi_{12138}(2053,\cdot)\) \(1\) \(1\) \(e\left(\frac{55}{204}\right)\) \(e\left(\frac{173}{204}\right)\) \(e\left(\frac{11}{17}\right)\) \(e\left(\frac{29}{102}\right)\) \(e\left(\frac{1}{204}\right)\) \(e\left(\frac{55}{102}\right)\) \(e\left(\frac{1}{68}\right)\) \(e\left(\frac{47}{204}\right)\) \(e\left(\frac{175}{204}\right)\) \(e\left(\frac{3}{68}\right)\)
\(\chi_{12138}(2095,\cdot)\) \(1\) \(1\) \(e\left(\frac{49}{204}\right)\) \(e\left(\frac{143}{204}\right)\) \(e\left(\frac{3}{17}\right)\) \(e\left(\frac{11}{102}\right)\) \(e\left(\frac{127}{204}\right)\) \(e\left(\frac{49}{102}\right)\) \(e\left(\frac{59}{68}\right)\) \(e\left(\frac{53}{204}\right)\) \(e\left(\frac{193}{204}\right)\) \(e\left(\frac{41}{68}\right)\)
\(\chi_{12138}(2461,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{204}\right)\) \(e\left(\frac{157}{204}\right)\) \(e\left(\frac{9}{17}\right)\) \(e\left(\frac{67}{102}\right)\) \(e\left(\frac{41}{204}\right)\) \(e\left(\frac{11}{102}\right)\) \(e\left(\frac{41}{68}\right)\) \(e\left(\frac{91}{204}\right)\) \(e\left(\frac{35}{204}\right)\) \(e\left(\frac{55}{68}\right)\)
\(\chi_{12138}(2503,\cdot)\) \(1\) \(1\) \(e\left(\frac{161}{204}\right)\) \(e\left(\frac{91}{204}\right)\) \(e\left(\frac{5}{17}\right)\) \(e\left(\frac{7}{102}\right)\) \(e\left(\frac{155}{204}\right)\) \(e\left(\frac{59}{102}\right)\) \(e\left(\frac{19}{68}\right)\) \(e\left(\frac{145}{204}\right)\) \(e\left(\frac{197}{204}\right)\) \(e\left(\frac{57}{68}\right)\)
\(\chi_{12138}(2767,\cdot)\) \(1\) \(1\) \(e\left(\frac{199}{204}\right)\) \(e\left(\frac{77}{204}\right)\) \(e\left(\frac{16}{17}\right)\) \(e\left(\frac{53}{102}\right)\) \(e\left(\frac{37}{204}\right)\) \(e\left(\frac{97}{102}\right)\) \(e\left(\frac{37}{68}\right)\) \(e\left(\frac{107}{204}\right)\) \(e\left(\frac{151}{204}\right)\) \(e\left(\frac{43}{68}\right)\)
\(\chi_{12138}(2809,\cdot)\) \(1\) \(1\) \(e\left(\frac{109}{204}\right)\) \(e\left(\frac{35}{204}\right)\) \(e\left(\frac{15}{17}\right)\) \(e\left(\frac{89}{102}\right)\) \(e\left(\frac{91}{204}\right)\) \(e\left(\frac{7}{102}\right)\) \(e\left(\frac{23}{68}\right)\) \(e\left(\frac{197}{204}\right)\) \(e\left(\frac{13}{204}\right)\) \(e\left(\frac{1}{68}\right)\)
\(\chi_{12138}(3175,\cdot)\) \(1\) \(1\) \(e\left(\frac{155}{204}\right)\) \(e\left(\frac{61}{204}\right)\) \(e\left(\frac{14}{17}\right)\) \(e\left(\frac{91}{102}\right)\) \(e\left(\frac{77}{204}\right)\) \(e\left(\frac{53}{102}\right)\) \(e\left(\frac{9}{68}\right)\) \(e\left(\frac{151}{204}\right)\) \(e\left(\frac{11}{204}\right)\) \(e\left(\frac{27}{68}\right)\)
\(\chi_{12138}(3481,\cdot)\) \(1\) \(1\) \(e\left(\frac{139}{204}\right)\) \(e\left(\frac{185}{204}\right)\) \(e\left(\frac{4}{17}\right)\) \(e\left(\frac{77}{102}\right)\) \(e\left(\frac{73}{204}\right)\) \(e\left(\frac{37}{102}\right)\) \(e\left(\frac{5}{68}\right)\) \(e\left(\frac{167}{204}\right)\) \(e\left(\frac{127}{204}\right)\) \(e\left(\frac{15}{68}\right)\)
\(\chi_{12138}(3523,\cdot)\) \(1\) \(1\) \(e\left(\frac{169}{204}\right)\) \(e\left(\frac{131}{204}\right)\) \(e\left(\frac{10}{17}\right)\) \(e\left(\frac{65}{102}\right)\) \(e\left(\frac{55}{204}\right)\) \(e\left(\frac{67}{102}\right)\) \(e\left(\frac{55}{68}\right)\) \(e\left(\frac{137}{204}\right)\) \(e\left(\frac{37}{204}\right)\) \(e\left(\frac{29}{68}\right)\)
\(\chi_{12138}(3889,\cdot)\) \(1\) \(1\) \(e\left(\frac{95}{204}\right)\) \(e\left(\frac{169}{204}\right)\) \(e\left(\frac{2}{17}\right)\) \(e\left(\frac{13}{102}\right)\) \(e\left(\frac{113}{204}\right)\) \(e\left(\frac{95}{102}\right)\) \(e\left(\frac{45}{68}\right)\) \(e\left(\frac{7}{204}\right)\) \(e\left(\frac{191}{204}\right)\) \(e\left(\frac{67}{68}\right)\)
\(\chi_{12138}(3931,\cdot)\) \(1\) \(1\) \(e\left(\frac{77}{204}\right)\) \(e\left(\frac{79}{204}\right)\) \(e\left(\frac{12}{17}\right)\) \(e\left(\frac{61}{102}\right)\) \(e\left(\frac{83}{204}\right)\) \(e\left(\frac{77}{102}\right)\) \(e\left(\frac{15}{68}\right)\) \(e\left(\frac{25}{204}\right)\) \(e\left(\frac{41}{204}\right)\) \(e\left(\frac{45}{68}\right)\)
\(\chi_{12138}(4195,\cdot)\) \(1\) \(1\) \(e\left(\frac{79}{204}\right)\) \(e\left(\frac{89}{204}\right)\) \(e\left(\frac{9}{17}\right)\) \(e\left(\frac{101}{102}\right)\) \(e\left(\frac{109}{204}\right)\) \(e\left(\frac{79}{102}\right)\) \(e\left(\frac{41}{68}\right)\) \(e\left(\frac{23}{204}\right)\) \(e\left(\frac{103}{204}\right)\) \(e\left(\frac{55}{68}\right)\)
\(\chi_{12138}(4237,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{204}\right)\) \(e\left(\frac{23}{204}\right)\) \(e\left(\frac{5}{17}\right)\) \(e\left(\frac{41}{102}\right)\) \(e\left(\frac{19}{204}\right)\) \(e\left(\frac{25}{102}\right)\) \(e\left(\frac{19}{68}\right)\) \(e\left(\frac{77}{204}\right)\) \(e\left(\frac{61}{204}\right)\) \(e\left(\frac{57}{68}\right)\)
\(\chi_{12138}(4603,\cdot)\) \(1\) \(1\) \(e\left(\frac{35}{204}\right)\) \(e\left(\frac{73}{204}\right)\) \(e\left(\frac{7}{17}\right)\) \(e\left(\frac{37}{102}\right)\) \(e\left(\frac{149}{204}\right)\) \(e\left(\frac{35}{102}\right)\) \(e\left(\frac{13}{68}\right)\) \(e\left(\frac{67}{204}\right)\) \(e\left(\frac{167}{204}\right)\) \(e\left(\frac{39}{68}\right)\)
\(\chi_{12138}(4645,\cdot)\) \(1\) \(1\) \(e\left(\frac{137}{204}\right)\) \(e\left(\frac{175}{204}\right)\) \(e\left(\frac{7}{17}\right)\) \(e\left(\frac{37}{102}\right)\) \(e\left(\frac{47}{204}\right)\) \(e\left(\frac{35}{102}\right)\) \(e\left(\frac{47}{68}\right)\) \(e\left(\frac{169}{204}\right)\) \(e\left(\frac{65}{204}\right)\) \(e\left(\frac{5}{68}\right)\)
\(\chi_{12138}(4909,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{204}\right)\) \(e\left(\frac{197}{204}\right)\) \(e\left(\frac{14}{17}\right)\) \(e\left(\frac{23}{102}\right)\) \(e\left(\frac{145}{204}\right)\) \(e\left(\frac{19}{102}\right)\) \(e\left(\frac{9}{68}\right)\) \(e\left(\frac{83}{204}\right)\) \(e\left(\frac{79}{204}\right)\) \(e\left(\frac{27}{68}\right)\)
\(\chi_{12138}(5317,\cdot)\) \(1\) \(1\) \(e\left(\frac{179}{204}\right)\) \(e\left(\frac{181}{204}\right)\) \(e\left(\frac{12}{17}\right)\) \(e\left(\frac{61}{102}\right)\) \(e\left(\frac{185}{204}\right)\) \(e\left(\frac{77}{102}\right)\) \(e\left(\frac{49}{68}\right)\) \(e\left(\frac{127}{204}\right)\) \(e\left(\frac{143}{204}\right)\) \(e\left(\frac{11}{68}\right)\)
\(\chi_{12138}(5359,\cdot)\) \(1\) \(1\) \(e\left(\frac{197}{204}\right)\) \(e\left(\frac{67}{204}\right)\) \(e\left(\frac{2}{17}\right)\) \(e\left(\frac{13}{102}\right)\) \(e\left(\frac{11}{204}\right)\) \(e\left(\frac{95}{102}\right)\) \(e\left(\frac{11}{68}\right)\) \(e\left(\frac{109}{204}\right)\) \(e\left(\frac{89}{204}\right)\) \(e\left(\frac{33}{68}\right)\)
\(\chi_{12138}(5623,\cdot)\) \(1\) \(1\) \(e\left(\frac{163}{204}\right)\) \(e\left(\frac{101}{204}\right)\) \(e\left(\frac{2}{17}\right)\) \(e\left(\frac{47}{102}\right)\) \(e\left(\frac{181}{204}\right)\) \(e\left(\frac{61}{102}\right)\) \(e\left(\frac{45}{68}\right)\) \(e\left(\frac{143}{204}\right)\) \(e\left(\frac{55}{204}\right)\) \(e\left(\frac{67}{68}\right)\)
\(\chi_{12138}(5665,\cdot)\) \(1\) \(1\) \(e\left(\frac{145}{204}\right)\) \(e\left(\frac{11}{204}\right)\) \(e\left(\frac{12}{17}\right)\) \(e\left(\frac{95}{102}\right)\) \(e\left(\frac{151}{204}\right)\) \(e\left(\frac{43}{102}\right)\) \(e\left(\frac{15}{68}\right)\) \(e\left(\frac{161}{204}\right)\) \(e\left(\frac{109}{204}\right)\) \(e\left(\frac{45}{68}\right)\)
\(\chi_{12138}(6073,\cdot)\) \(1\) \(1\) \(e\left(\frac{53}{204}\right)\) \(e\left(\frac{163}{204}\right)\) \(e\left(\frac{14}{17}\right)\) \(e\left(\frac{91}{102}\right)\) \(e\left(\frac{179}{204}\right)\) \(e\left(\frac{53}{102}\right)\) \(e\left(\frac{43}{68}\right)\) \(e\left(\frac{49}{204}\right)\) \(e\left(\frac{113}{204}\right)\) \(e\left(\frac{61}{68}\right)\)