Properties

Label 12138.667
Modulus $12138$
Conductor $2023$
Order $204$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(12138, base_ring=CyclotomicField(204)) M = H._module chi = DirichletCharacter(H, M([0,68,57]))
 
Copy content pari:[g,chi] = znchar(Mod(667,12138))
 

Basic properties

Modulus: \(12138\)
Conductor: \(2023\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(204\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{2023}(667,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 12138.cn

\(\chi_{12138}(319,\cdot)\) \(\chi_{12138}(361,\cdot)\) \(\chi_{12138}(625,\cdot)\) \(\chi_{12138}(667,\cdot)\) \(\chi_{12138}(1033,\cdot)\) \(\chi_{12138}(1075,\cdot)\) \(\chi_{12138}(1339,\cdot)\) \(\chi_{12138}(1381,\cdot)\) \(\chi_{12138}(1747,\cdot)\) \(\chi_{12138}(1789,\cdot)\) \(\chi_{12138}(2053,\cdot)\) \(\chi_{12138}(2095,\cdot)\) \(\chi_{12138}(2461,\cdot)\) \(\chi_{12138}(2503,\cdot)\) \(\chi_{12138}(2767,\cdot)\) \(\chi_{12138}(2809,\cdot)\) \(\chi_{12138}(3175,\cdot)\) \(\chi_{12138}(3481,\cdot)\) \(\chi_{12138}(3523,\cdot)\) \(\chi_{12138}(3889,\cdot)\) \(\chi_{12138}(3931,\cdot)\) \(\chi_{12138}(4195,\cdot)\) \(\chi_{12138}(4237,\cdot)\) \(\chi_{12138}(4603,\cdot)\) \(\chi_{12138}(4645,\cdot)\) \(\chi_{12138}(4909,\cdot)\) \(\chi_{12138}(5317,\cdot)\) \(\chi_{12138}(5359,\cdot)\) \(\chi_{12138}(5623,\cdot)\) \(\chi_{12138}(5665,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{204})$
Fixed field: Number field defined by a degree 204 polynomial (not computed)

Values on generators

\((8093,10405,9829)\) → \((1,e\left(\frac{1}{3}\right),e\left(\frac{19}{68}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(11\)\(13\)\(19\)\(23\)\(25\)\(29\)\(31\)\(37\)\(41\)
\( \chi_{ 12138 }(667, a) \) \(1\)\(1\)\(e\left(\frac{133}{204}\right)\)\(e\left(\frac{155}{204}\right)\)\(e\left(\frac{13}{17}\right)\)\(e\left(\frac{59}{102}\right)\)\(e\left(\frac{199}{204}\right)\)\(e\left(\frac{31}{102}\right)\)\(e\left(\frac{63}{68}\right)\)\(e\left(\frac{173}{204}\right)\)\(e\left(\frac{145}{204}\right)\)\(e\left(\frac{53}{68}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 12138 }(667,a) \;\) at \(\;a = \) e.g. 2