Properties

Label 12138.cb
Modulus $12138$
Conductor $2023$
Order $102$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(12138, base_ring=CyclotomicField(102)) M = H._module chi = DirichletCharacter(H, M([0,68,69])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(67,12138)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(12138\)
Conductor: \(2023\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(102\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 2023.bb
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{51})$
Fixed field: Number field defined by a degree 102 polynomial (not computed)

First 31 of 32 characters in Galois orbit

Character \(-1\) \(1\) \(5\) \(11\) \(13\) \(19\) \(23\) \(25\) \(29\) \(31\) \(37\) \(41\)
\(\chi_{12138}(67,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{102}\right)\) \(e\left(\frac{23}{102}\right)\) \(e\left(\frac{10}{17}\right)\) \(e\left(\frac{41}{51}\right)\) \(e\left(\frac{19}{102}\right)\) \(e\left(\frac{25}{51}\right)\) \(e\left(\frac{19}{34}\right)\) \(e\left(\frac{77}{102}\right)\) \(e\left(\frac{61}{102}\right)\) \(e\left(\frac{23}{34}\right)\)
\(\chi_{12138}(373,\cdot)\) \(1\) \(1\) \(e\left(\frac{95}{102}\right)\) \(e\left(\frac{67}{102}\right)\) \(e\left(\frac{4}{17}\right)\) \(e\left(\frac{13}{51}\right)\) \(e\left(\frac{11}{102}\right)\) \(e\left(\frac{44}{51}\right)\) \(e\left(\frac{11}{34}\right)\) \(e\left(\frac{7}{102}\right)\) \(e\left(\frac{89}{102}\right)\) \(e\left(\frac{33}{34}\right)\)
\(\chi_{12138}(781,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{102}\right)\) \(e\left(\frac{35}{102}\right)\) \(e\left(\frac{13}{17}\right)\) \(e\left(\frac{38}{51}\right)\) \(e\left(\frac{91}{102}\right)\) \(e\left(\frac{7}{51}\right)\) \(e\left(\frac{23}{34}\right)\) \(e\left(\frac{95}{102}\right)\) \(e\left(\frac{13}{102}\right)\) \(e\left(\frac{1}{34}\right)\)
\(\chi_{12138}(1087,\cdot)\) \(1\) \(1\) \(e\left(\frac{77}{102}\right)\) \(e\left(\frac{79}{102}\right)\) \(e\left(\frac{7}{17}\right)\) \(e\left(\frac{10}{51}\right)\) \(e\left(\frac{83}{102}\right)\) \(e\left(\frac{26}{51}\right)\) \(e\left(\frac{15}{34}\right)\) \(e\left(\frac{25}{102}\right)\) \(e\left(\frac{41}{102}\right)\) \(e\left(\frac{11}{34}\right)\)
\(\chi_{12138}(1495,\cdot)\) \(1\) \(1\) \(e\left(\frac{91}{102}\right)\) \(e\left(\frac{47}{102}\right)\) \(e\left(\frac{16}{17}\right)\) \(e\left(\frac{35}{51}\right)\) \(e\left(\frac{61}{102}\right)\) \(e\left(\frac{40}{51}\right)\) \(e\left(\frac{27}{34}\right)\) \(e\left(\frac{11}{102}\right)\) \(e\left(\frac{67}{102}\right)\) \(e\left(\frac{13}{34}\right)\)
\(\chi_{12138}(1801,\cdot)\) \(1\) \(1\) \(e\left(\frac{59}{102}\right)\) \(e\left(\frac{91}{102}\right)\) \(e\left(\frac{10}{17}\right)\) \(e\left(\frac{7}{51}\right)\) \(e\left(\frac{53}{102}\right)\) \(e\left(\frac{8}{51}\right)\) \(e\left(\frac{19}{34}\right)\) \(e\left(\frac{43}{102}\right)\) \(e\left(\frac{95}{102}\right)\) \(e\left(\frac{23}{34}\right)\)
\(\chi_{12138}(2209,\cdot)\) \(1\) \(1\) \(e\left(\frac{73}{102}\right)\) \(e\left(\frac{59}{102}\right)\) \(e\left(\frac{2}{17}\right)\) \(e\left(\frac{32}{51}\right)\) \(e\left(\frac{31}{102}\right)\) \(e\left(\frac{22}{51}\right)\) \(e\left(\frac{31}{34}\right)\) \(e\left(\frac{29}{102}\right)\) \(e\left(\frac{19}{102}\right)\) \(e\left(\frac{25}{34}\right)\)
\(\chi_{12138}(2515,\cdot)\) \(1\) \(1\) \(e\left(\frac{41}{102}\right)\) \(e\left(\frac{1}{102}\right)\) \(e\left(\frac{13}{17}\right)\) \(e\left(\frac{4}{51}\right)\) \(e\left(\frac{23}{102}\right)\) \(e\left(\frac{41}{51}\right)\) \(e\left(\frac{23}{34}\right)\) \(e\left(\frac{61}{102}\right)\) \(e\left(\frac{47}{102}\right)\) \(e\left(\frac{1}{34}\right)\)
\(\chi_{12138}(2923,\cdot)\) \(1\) \(1\) \(e\left(\frac{55}{102}\right)\) \(e\left(\frac{71}{102}\right)\) \(e\left(\frac{5}{17}\right)\) \(e\left(\frac{29}{51}\right)\) \(e\left(\frac{1}{102}\right)\) \(e\left(\frac{4}{51}\right)\) \(e\left(\frac{1}{34}\right)\) \(e\left(\frac{47}{102}\right)\) \(e\left(\frac{73}{102}\right)\) \(e\left(\frac{3}{34}\right)\)
\(\chi_{12138}(3229,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{102}\right)\) \(e\left(\frac{13}{102}\right)\) \(e\left(\frac{16}{17}\right)\) \(e\left(\frac{1}{51}\right)\) \(e\left(\frac{95}{102}\right)\) \(e\left(\frac{23}{51}\right)\) \(e\left(\frac{27}{34}\right)\) \(e\left(\frac{79}{102}\right)\) \(e\left(\frac{101}{102}\right)\) \(e\left(\frac{13}{34}\right)\)
\(\chi_{12138}(3637,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{102}\right)\) \(e\left(\frac{83}{102}\right)\) \(e\left(\frac{8}{17}\right)\) \(e\left(\frac{26}{51}\right)\) \(e\left(\frac{73}{102}\right)\) \(e\left(\frac{37}{51}\right)\) \(e\left(\frac{5}{34}\right)\) \(e\left(\frac{65}{102}\right)\) \(e\left(\frac{25}{102}\right)\) \(e\left(\frac{15}{34}\right)\)
\(\chi_{12138}(3943,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{102}\right)\) \(e\left(\frac{25}{102}\right)\) \(e\left(\frac{2}{17}\right)\) \(e\left(\frac{49}{51}\right)\) \(e\left(\frac{65}{102}\right)\) \(e\left(\frac{5}{51}\right)\) \(e\left(\frac{31}{34}\right)\) \(e\left(\frac{97}{102}\right)\) \(e\left(\frac{53}{102}\right)\) \(e\left(\frac{25}{34}\right)\)
\(\chi_{12138}(4351,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{102}\right)\) \(e\left(\frac{95}{102}\right)\) \(e\left(\frac{11}{17}\right)\) \(e\left(\frac{23}{51}\right)\) \(e\left(\frac{43}{102}\right)\) \(e\left(\frac{19}{51}\right)\) \(e\left(\frac{9}{34}\right)\) \(e\left(\frac{83}{102}\right)\) \(e\left(\frac{79}{102}\right)\) \(e\left(\frac{27}{34}\right)\)
\(\chi_{12138}(4657,\cdot)\) \(1\) \(1\) \(e\left(\frac{89}{102}\right)\) \(e\left(\frac{37}{102}\right)\) \(e\left(\frac{5}{17}\right)\) \(e\left(\frac{46}{51}\right)\) \(e\left(\frac{35}{102}\right)\) \(e\left(\frac{38}{51}\right)\) \(e\left(\frac{1}{34}\right)\) \(e\left(\frac{13}{102}\right)\) \(e\left(\frac{5}{102}\right)\) \(e\left(\frac{3}{34}\right)\)
\(\chi_{12138}(5065,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{102}\right)\) \(e\left(\frac{5}{102}\right)\) \(e\left(\frac{14}{17}\right)\) \(e\left(\frac{20}{51}\right)\) \(e\left(\frac{13}{102}\right)\) \(e\left(\frac{1}{51}\right)\) \(e\left(\frac{13}{34}\right)\) \(e\left(\frac{101}{102}\right)\) \(e\left(\frac{31}{102}\right)\) \(e\left(\frac{5}{34}\right)\)
\(\chi_{12138}(5371,\cdot)\) \(1\) \(1\) \(e\left(\frac{71}{102}\right)\) \(e\left(\frac{49}{102}\right)\) \(e\left(\frac{8}{17}\right)\) \(e\left(\frac{43}{51}\right)\) \(e\left(\frac{5}{102}\right)\) \(e\left(\frac{20}{51}\right)\) \(e\left(\frac{5}{34}\right)\) \(e\left(\frac{31}{102}\right)\) \(e\left(\frac{59}{102}\right)\) \(e\left(\frac{15}{34}\right)\)
\(\chi_{12138}(6085,\cdot)\) \(1\) \(1\) \(e\left(\frac{53}{102}\right)\) \(e\left(\frac{61}{102}\right)\) \(e\left(\frac{11}{17}\right)\) \(e\left(\frac{40}{51}\right)\) \(e\left(\frac{77}{102}\right)\) \(e\left(\frac{2}{51}\right)\) \(e\left(\frac{9}{34}\right)\) \(e\left(\frac{49}{102}\right)\) \(e\left(\frac{11}{102}\right)\) \(e\left(\frac{27}{34}\right)\)
\(\chi_{12138}(6493,\cdot)\) \(1\) \(1\) \(e\left(\frac{67}{102}\right)\) \(e\left(\frac{29}{102}\right)\) \(e\left(\frac{3}{17}\right)\) \(e\left(\frac{14}{51}\right)\) \(e\left(\frac{55}{102}\right)\) \(e\left(\frac{16}{51}\right)\) \(e\left(\frac{21}{34}\right)\) \(e\left(\frac{35}{102}\right)\) \(e\left(\frac{37}{102}\right)\) \(e\left(\frac{29}{34}\right)\)
\(\chi_{12138}(6799,\cdot)\) \(1\) \(1\) \(e\left(\frac{35}{102}\right)\) \(e\left(\frac{73}{102}\right)\) \(e\left(\frac{14}{17}\right)\) \(e\left(\frac{37}{51}\right)\) \(e\left(\frac{47}{102}\right)\) \(e\left(\frac{35}{51}\right)\) \(e\left(\frac{13}{34}\right)\) \(e\left(\frac{67}{102}\right)\) \(e\left(\frac{65}{102}\right)\) \(e\left(\frac{5}{34}\right)\)
\(\chi_{12138}(7207,\cdot)\) \(1\) \(1\) \(e\left(\frac{49}{102}\right)\) \(e\left(\frac{41}{102}\right)\) \(e\left(\frac{6}{17}\right)\) \(e\left(\frac{11}{51}\right)\) \(e\left(\frac{25}{102}\right)\) \(e\left(\frac{49}{51}\right)\) \(e\left(\frac{25}{34}\right)\) \(e\left(\frac{53}{102}\right)\) \(e\left(\frac{91}{102}\right)\) \(e\left(\frac{7}{34}\right)\)
\(\chi_{12138}(7921,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{102}\right)\) \(e\left(\frac{53}{102}\right)\) \(e\left(\frac{9}{17}\right)\) \(e\left(\frac{8}{51}\right)\) \(e\left(\frac{97}{102}\right)\) \(e\left(\frac{31}{51}\right)\) \(e\left(\frac{29}{34}\right)\) \(e\left(\frac{71}{102}\right)\) \(e\left(\frac{43}{102}\right)\) \(e\left(\frac{19}{34}\right)\)
\(\chi_{12138}(8227,\cdot)\) \(1\) \(1\) \(e\left(\frac{101}{102}\right)\) \(e\left(\frac{97}{102}\right)\) \(e\left(\frac{3}{17}\right)\) \(e\left(\frac{31}{51}\right)\) \(e\left(\frac{89}{102}\right)\) \(e\left(\frac{50}{51}\right)\) \(e\left(\frac{21}{34}\right)\) \(e\left(\frac{1}{102}\right)\) \(e\left(\frac{71}{102}\right)\) \(e\left(\frac{29}{34}\right)\)
\(\chi_{12138}(8635,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{102}\right)\) \(e\left(\frac{65}{102}\right)\) \(e\left(\frac{12}{17}\right)\) \(e\left(\frac{5}{51}\right)\) \(e\left(\frac{67}{102}\right)\) \(e\left(\frac{13}{51}\right)\) \(e\left(\frac{33}{34}\right)\) \(e\left(\frac{89}{102}\right)\) \(e\left(\frac{97}{102}\right)\) \(e\left(\frac{31}{34}\right)\)
\(\chi_{12138}(8941,\cdot)\) \(1\) \(1\) \(e\left(\frac{83}{102}\right)\) \(e\left(\frac{7}{102}\right)\) \(e\left(\frac{6}{17}\right)\) \(e\left(\frac{28}{51}\right)\) \(e\left(\frac{59}{102}\right)\) \(e\left(\frac{32}{51}\right)\) \(e\left(\frac{25}{34}\right)\) \(e\left(\frac{19}{102}\right)\) \(e\left(\frac{23}{102}\right)\) \(e\left(\frac{7}{34}\right)\)
\(\chi_{12138}(9349,\cdot)\) \(1\) \(1\) \(e\left(\frac{97}{102}\right)\) \(e\left(\frac{77}{102}\right)\) \(e\left(\frac{15}{17}\right)\) \(e\left(\frac{2}{51}\right)\) \(e\left(\frac{37}{102}\right)\) \(e\left(\frac{46}{51}\right)\) \(e\left(\frac{3}{34}\right)\) \(e\left(\frac{5}{102}\right)\) \(e\left(\frac{49}{102}\right)\) \(e\left(\frac{9}{34}\right)\)
\(\chi_{12138}(9655,\cdot)\) \(1\) \(1\) \(e\left(\frac{65}{102}\right)\) \(e\left(\frac{19}{102}\right)\) \(e\left(\frac{9}{17}\right)\) \(e\left(\frac{25}{51}\right)\) \(e\left(\frac{29}{102}\right)\) \(e\left(\frac{14}{51}\right)\) \(e\left(\frac{29}{34}\right)\) \(e\left(\frac{37}{102}\right)\) \(e\left(\frac{77}{102}\right)\) \(e\left(\frac{19}{34}\right)\)
\(\chi_{12138}(10063,\cdot)\) \(1\) \(1\) \(e\left(\frac{79}{102}\right)\) \(e\left(\frac{89}{102}\right)\) \(e\left(\frac{1}{17}\right)\) \(e\left(\frac{50}{51}\right)\) \(e\left(\frac{7}{102}\right)\) \(e\left(\frac{28}{51}\right)\) \(e\left(\frac{7}{34}\right)\) \(e\left(\frac{23}{102}\right)\) \(e\left(\frac{1}{102}\right)\) \(e\left(\frac{21}{34}\right)\)
\(\chi_{12138}(10369,\cdot)\) \(1\) \(1\) \(e\left(\frac{47}{102}\right)\) \(e\left(\frac{31}{102}\right)\) \(e\left(\frac{12}{17}\right)\) \(e\left(\frac{22}{51}\right)\) \(e\left(\frac{101}{102}\right)\) \(e\left(\frac{47}{51}\right)\) \(e\left(\frac{33}{34}\right)\) \(e\left(\frac{55}{102}\right)\) \(e\left(\frac{29}{102}\right)\) \(e\left(\frac{31}{34}\right)\)
\(\chi_{12138}(10777,\cdot)\) \(1\) \(1\) \(e\left(\frac{61}{102}\right)\) \(e\left(\frac{101}{102}\right)\) \(e\left(\frac{4}{17}\right)\) \(e\left(\frac{47}{51}\right)\) \(e\left(\frac{79}{102}\right)\) \(e\left(\frac{10}{51}\right)\) \(e\left(\frac{11}{34}\right)\) \(e\left(\frac{41}{102}\right)\) \(e\left(\frac{55}{102}\right)\) \(e\left(\frac{33}{34}\right)\)
\(\chi_{12138}(11083,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{102}\right)\) \(e\left(\frac{43}{102}\right)\) \(e\left(\frac{15}{17}\right)\) \(e\left(\frac{19}{51}\right)\) \(e\left(\frac{71}{102}\right)\) \(e\left(\frac{29}{51}\right)\) \(e\left(\frac{3}{34}\right)\) \(e\left(\frac{73}{102}\right)\) \(e\left(\frac{83}{102}\right)\) \(e\left(\frac{9}{34}\right)\)
\(\chi_{12138}(11491,\cdot)\) \(1\) \(1\) \(e\left(\frac{43}{102}\right)\) \(e\left(\frac{11}{102}\right)\) \(e\left(\frac{7}{17}\right)\) \(e\left(\frac{44}{51}\right)\) \(e\left(\frac{49}{102}\right)\) \(e\left(\frac{43}{51}\right)\) \(e\left(\frac{15}{34}\right)\) \(e\left(\frac{59}{102}\right)\) \(e\left(\frac{7}{102}\right)\) \(e\left(\frac{11}{34}\right)\)